
mpnum Documentation
Release git

Daniel Suess and Milan Holzäpfel

Jan 19, 2018

Documentation

1 A matrix product representation library for Python 1
1.1 Introduction . 1
1.2 API reference . 7
1.3 Introductory Notebook to mpnum . 48
1.4 Development & Contributing . 60
1.5 Gallery . 62

2 Indices and tables 63

Bibliography 65

Python Module Index 67

i

ii

CHAPTER 1

A matrix product representation library for Python

mpnum is a flexible, user-friendly, and expandable toolbox for the matrix product state/tensor train tensor format.

1.1 Introduction

mpnum is a flexible, user-friendly, and expandable toolbox for the matrix product state/tensor train tensor format. It is
available under the BSD license at mpnum on Github. mpnum provides:

• support for well-known matrix product representations, such as:

– matrix product states (MPS), also known as tensor trains (TT)

– matrix product operators (MPO)

– local purification matrix product states (PMPS)

– arbitrary matrix product arrays (MPA)

• arithmetic operations: addition, multiplication, contraction etc.

• compression, canonical forms, etc. (see compress(), canonicalize())

• finding extremal eigenvalues and eigenvectors of MPOs (see eig())

In this introduction, we discuss mpnum’s basic data structure, the MPArray (MPA). If you are familiar with matrix
product states and want to see mpnum in action, you can skip to the IPython notebook mpnum_intro.ipynb (view
mpnum_intro.ipynb on Github).

Contents

• Introduction

– Matrix product arrays

* Graphical notation

1

https://github.com/dseuss/mpnum
https://github.com/dseuss/mpnum/blob/master/examples/mpnum_intro.ipynb
https://github.com/dseuss/mpnum/blob/master/examples/mpnum_intro.ipynb

mpnum Documentation, Release git

* Matrix product states (MPS)

* Matrix product operators (MPO)

* Local purification form MPS (PMPS)

* General matrix product arrays

– Next steps

– References

1.1.1 Matrix product arrays

The basic data structure of mpnum is the class mpnum.mparray.MPArray . It represents tensors in matrix-product
form in an opaque manner while providing the user with a high-level interface similar to numpy’s ndarray. Special
cases of MPAs include matrix-product states (MPS) and operators (MPOs) used in quantum physics.

Graphical notation

Operations on tensors such as contractions are much easier to write down using graphical notation [Sch11, Figure 38].
A simple case of of a tensor contraction is the product of two matrices:

𝐶 = 𝐴𝐵𝑇

We represent this tensor contraction with the following figure:

Each of the tensors 𝐴, 𝐵 and 𝐶 is represented by one box. All the tensors have two indices (as they are matrices),
therefore there are two lines emerging from each box, called legs. Connected legs indicate a contraction. The relation
between legs on the left and right hand sides of the equality sign is given by their position. In this figure, we specify
the relation between the indices in a formula like 𝐵𝑘𝑙 and the individual lines in the figure by giving specifying the
name of each index on each line.

In this simple case, the figure looks more complicated than the formula, but it contains complete information on how
all indices of all tensors are connected. To be fair, we should mention the indices in the formula as well:

𝐶𝑖𝑗 =
∑︁
𝑘

𝐴𝑖𝑘𝐵𝑗𝑘

Another simple example is the following product of two vectors and a matrix:

𝑐 = 𝑢†𝐴𝑣 =
∑︁
𝑖𝑗

𝑢*𝑖𝐴𝑖𝑗𝑣𝑗

This formula is represented by the following figure:

2 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

Matrix product states (MPS)

The matrix product state representation of a state |𝜓⟩ on four subsystems is given by

⟨𝑖𝑗𝑘𝑙|𝜓⟩ = 𝜓𝑖𝑗𝑘𝑙 = 𝐴𝑖𝐵𝑗𝐶𝑘𝐷𝑙

where each 𝐴𝑖 ∈ C1×𝐷; 𝐵𝑗 , 𝐶𝑘 ∈ C𝐷×𝐷 and 𝐷𝑙 ∈ C𝐷×1 (reference: e.g. [Sch11]; exact definition). This
construction is also known as tensor train and it is given by the following simple figure:

We call 𝜓 a global tensor and we call the MPS matrices 𝐴𝑖, 𝐵𝑗 etc. which are associated to a certain subsystem local
tensors. The legs/indices 𝑖, 𝑗, . . . of the original tensor |𝜓⟩ are called physical legs. The additional legs in the matrix
product representation are called virtual legs. The dimension (size) of the virtual legs are called the representation
ranks or compression ranks. In the physics literature, the virtual legs are often called bonds and the representation
ranks are called bond dimensions.

Very often, we can omit the labels of all the legs. The figure then becomes very simple:

As explained in the next paragraph on MPOs, we usually add dummy virtual legs of size 1 to our tensors:

Matrix product operators (MPO)

The matrix product operator representation of an operator 𝜌 on three subsystems is given by

⟨𝑖1𝑖2𝑖3|𝜌|𝑗1𝑗2𝑗3⟩ = 𝜌𝑖1𝑖2𝑖3,𝑗1𝑗2𝑗3 = 𝐴𝑖1𝑗1𝐵𝑖2𝑗2𝐶𝑖3𝑗3

where the 𝐴𝑖1𝑗1 are row vectors, the 𝐵𝑖2𝑗2 are matrices and the 𝐶𝑖3𝑗3 are column vectors (reference: e.g. [Sch11];
exact definition). This is represented by the following figure:

1.1. Introduction 3

mpnum Documentation, Release git

Be aware that the legs of 𝜌 are not in the order 𝑖1𝑖2𝑖3𝑗1𝑗2𝑗3 (called global order) which is expected from the expression
⟨𝑖1𝑖2𝑖3|𝜌|𝑗1𝑗2𝑗3⟩ and which is obtained by a simple reshape of the matrix 𝜌 into a tensor. Instead, the order of the legs
of 𝜌 must match the order in the MPO construction, which is 𝑖1𝑗1𝑖2𝑗2𝑖3𝑗3. We call this latter order local order. The
functions global_to_local and local_to_global can convert tensors between the two orders.

In order to simplify the implementation, it is useful to introduce dummy virtual legs with index size 1 on the left and
the right of the MPS or MPO chain:

With these dummy virtual legs, all the tensors in the representation have exactly two virtual legs.

It is useful to draw the physical column indices upward from the global and local tensors while leaving the physical
row indices downward:

4 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

With this arrangement, we can nicely express a product of two MPOs:

This figure tells us how to obtain the local tensors which represent the product: We have to compute new tensors as
indicated by the shaded area. The figure also tells us that the representation rank of the result is the product of the
representation rank of the two individual MPO representations.

1.1. Introduction 5

mpnum Documentation, Release git

Local purification form MPS (PMPS)

The local purification form matrix product state representation (PMPS or LPMPS) is defined as follows:

Here, all the 𝑖 indices are actual sites and all the 𝑗 indices are ancilla sites used for the purification (reference: e.g.
[Cue13]; exact definition). The non-negative operator described by this representation is given by

𝜌 = tr𝑗1𝑗2𝑗3(|𝜓⟩⟨𝜓|)

The following figure describes the relation:

It also tells us how to convert a PMPS representation into an MPO representation and how the representation rank
changes: The MPO representation rank is the square of the PMPS representation rank.

General matrix product arrays

Up to now, all examples had the same number of legs on each site. However, the MPArray is not restricted to these
cases, but can be used to express any local structure. An example of a inhomogenous tensor is shown in the following
figure:

6 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

1.1.2 Next steps

The Jupyter notebook mpnum_intro.ipynb in the folder Notebooks provides an interactive introduction on how
to use mpnum for basic MPS, MPO and MPA operations. Its rendered version can also be viewed in the Introductory
Notebook to mpnum. If you open the notebook on your own computer, it allows you to run and modify all the
commands interactively (more information is available in the section “Jupyter Notebook Quickstart” of the Jupyter
documentation).

1.1.3 References

1.2 API reference

1.2.1 Module overview

• mpnum.mparray: Basic matrix product array (MPA) routines and compression

• mppnum.mpstruct: Underlying structure of MPAs to manage the local tensors

• mpnum.mpsmpo: Convert matrix product state (MPS), matrix product operator (MPO) and locally purifying
MPS (PMPS) representations and compute local reduced states.

• mpnum.factory: Generate random, MPS, MPOs, MPDOs, MPAs, etc.

• mpnum.linalg: Compute the smallest eigenvalues & vectors of MPOs

• mpnum.special: Optimized versions of some routines for special cases

• mpnum.povm: Matrix product representation of Positive operator valued measures (POVM)

• mpnum.povm.localpovm: Pauli-like POVM on a single site

• mpnum.povm.mppovm: Matrix product POVM based on the Pauli-like POVM

1.2.2 mparray

Core MPArray data structure & general purpose functions

Todo: single site MPAs – what is left?

Todo: Local tensor ownership – see MPArray class comment

Todo: Possible optimization:

1.2. API reference 7

https://jupyter.readthedocs.io/
https://jupyter.readthedocs.io/

mpnum Documentation, Release git

• replace integer-for loops with iterator (not obviously possible everwhere)

• replace internal structure as list of arrays with lazy generator of arrays (might not be possible, since we often
iterate both ways!)

• more in place operations for addition, subtraction, multiplication

Todo: Replace all occurences of self._ltens with self[. . .] or similar & benchmark. This will allow easier transition
to lazy evaluation of local tensors

class mpnum.mparray.MPArray(ltens)
Bases: object

Efficient representation of a general N-partite array 𝐴 in matrix product form with open boundary conditions:

𝐴𝑖1,...,𝑖𝑁 = 𝐴
[1]
𝑖1
. . . 𝐴

[𝑁]
𝑖𝑁

(1.1)

where the 𝐴[𝑘] are local tensors (with N legs/dimensions). The matrix products in (1.1) are taken with respect
to the left- and right-most legs (virtual indices) and the multi-index 𝑖𝑘 corresponds to the true local legs. Open
boundary conditions imply that 𝐴[1] is 1-by-something and 𝐴[𝑁] is something-by-1.

For the details on the data model used for storing the local tensors see mpstruct.LocalTensors.

Todo: As it is now, e.g. __imul__() modifies items from self._ltens. This requires e.g. chain() to
take copies of the local tensors. The data model seems to be that an MPArray instance owns its local tensors and
everyone else, including each new MPArray instance, must take copies. Is this correct?

__init__(ltens)

Parameters ltens – local tensors as instance of mpstruct.LocalTensors or simply as
a list of numpy.ndarray in the format described at mpstruct.LocalTensors

__len__()
Returns the number of sites

T
Transpose (=reverse order of) physical legs on each site. See also transpose() for more fine grained
control.

adj()
Hermitian adjoint. Equivalent to self.T.conj().

axis_iter(axes=0)
Returns an iterator yielding Sub-MPArrays of self by iterating over the specified physical axes.

Example: If self represents a bipartite (i.e. length 2) array with 2 physical dimensions on each site
A[(k,l), (m,n)], self.axis_iter(0) is equivalent to:

(A[(k, :), (m, :)] for m in range(...) for k in range(...))

Parameters axes – Iterable or int specifiying the physical axes to iterate over (default 0 for
each site)

Returns Iterator over MPArray

canonical_form
See mpstruct.LocalTensors.canonical_form

8 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

canonicalize(left=None, right=None)
Brings the MPA to canonical form in place [Sch11, Sec. 4.4]

Note that we do not support full left- or right-canonicalization. In general, the right- (left- resp.)most local
tensor cannot be in a canonical form since at least one local tensor must be non-normalized.

The following values for left and right will be needed most frequently:

Left-/Right- canonicalize: Do Nothing To canonicalize maximally
left None 'afull', len(self) - 1
right None 'afull', 1

'afull' is short for “almost full” (we do not support normalizing the outermost sites).

Arbitrary integer values of left and right have the following meaning:

• self[:left] will be left-normalized

• self[right:] will be right-normalized

In accordance with the last table, the special values None and 'afull' will be replaced by the following
integers:

None 'afull'
left 0 len(self) - 1
right len(self) 1

Exceptions raised:

• Integer argument too large or small: IndexError

• Matrix would be both left- and right-normalized: ValueError

compress(method=’svd’, **kwargs)
Compress self, modifying it in-place.

Let |𝑢⟩ the original vector and let |𝑐⟩ the compressed vector. The compressions we return have the property
(cf. [Sch11, Sec. 4.5.2])

⟨𝑢|𝑐⟩ = ⟨𝑐|𝑐⟩ ∈ (0,∞).

It is a useful property because it ensures

min
𝜑∈R

‖𝑢− 𝑟𝑒𝑖𝜑𝑐‖ = ‖𝑢− 𝑟𝑐‖, 𝑟 > 0,

min
𝜇∈C

‖𝑢− 𝜇𝑐‖ = ‖𝑢− 𝑐‖

for the vector 2-norm. Users of this function can compute norm differences between u and a normalized c
via

‖𝑢− 𝑟𝑐‖2 = ‖𝑢‖2 + 𝑟(𝑟 − 2)⟨𝑢|𝑐⟩, 𝑟 ≥ 0.

In the special case of ‖𝑢‖ = 1 and 𝑐0 = 𝑐/‖𝑐‖ (pure quantum states as MPS), we obtain

‖𝑢− 𝑐0‖2 = 2(1 −
√︀

⟨𝑢|𝑐⟩)

Returns Inner product ⟨𝑢|𝑐⟩ ∈ (0,∞) of the original u and its compression c.

Parameters method – 'svd' or 'var'

1.2. API reference 9

mpnum Documentation, Release git

Parameters for 'svd':

Parameters

• rank – Maximal rank of the result. (default: None)

• relerr – Maximal fraction of discarded singular values. Default 0. If both rank and
relerr are given, the smaller resulting rank is used.

• direction – 'right' (sweep from left to right), 'left' (inverse) or None (choose
depending on canonicalization). (default: None)

• canonicalize – SVD compression works best when the MPA is brought into full left-
/right-cannonical form first. This variable determines whether cannonical form is enforced
before compression (default: True)

• svdfunc – Which SVD function to use during the compression. It should follow the
conventios of truncated_svd(), which is also the default choice. In some circum-
stances, a partial SVD as provided by scipy.sparse.linalg.svds() or a ran-
domized SVD such as randomized_svd() might speed up computations with no or
little loss of accuracy.

Parameters for 'var':

Parameters

• rank – Maximal rank for the result. Either startmpa or rank is required.

• num_sweeps – Number of variational sweeps (required).

• startmpa – Start vector, also fixes the rank of the result. Default: Random, with same
norm as self.

• randstate – numpy.random.RandomState instance used for random start vector.
(default: numpy.random).

• var_sites – Number of connected sites to be varied simultaneously (default 1)

Increasing var_sites makes it less likely to get stuck in a local minimum but is generally slower.

References:

• 'svd': Singular value truncation, [Sch11, Sec. 4.5.1]

• 'var': Variational compression, [Sch11, Sec. 4.5.2]

compression(method=’svd’, **kwargs)
Return a compression of self. Does not modify self.

Parameters: See compress().

Returns (compressed_mpa, overlap)where overlap is the inner product returned by
compress().

conj()
Complex conjugate

copy()
Returns a deep copy of the MPA

dtype
Returns the dtype that should be returned by to_array

10 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

dump(target)
Serializes MPArray to h5py.Group. Recover using load().

Parameters target – h5py.Group the instance should be saved to or path to h5 file (it’s
then serialized to /)

classmethod from_array(array, ndims=None, has_virtual=False)
Create MPA from array in local form.

See mpnum.tools.global_to_local() for global vs. local form.

Computes the (exact up to numerical accuracy) representation of array as MPA with open boundary con-
ditions, i.e. rank 1 at the boundary. This is done by factoring off the left and the “physical” legs from the
rest of the tensor via QR decomposition and working its way through the tensor from the left. This yields
a left-canonical representation of array. [Sch11, Sec. 4.3.1]

The result is a chain of local tensors with ndims physical legs at each location and has array.ndim
// ndims number of sites (assuming ndims has the same value for each site)

has_virtual allows to treat a part of the linear chain of an MPA as MPA as well. The rank on the left
and right can be different from one and different from each other in that case. This is useful to apply SVD
compression only to part of an MPA.

Parameters

• array (np.ndarray) – Dense array with global structure array[(i0), ...,
(iN)], i.e. the legs which are factorized into the same factor are already adjacent. (For
me details see tools.global_to_local())

• ndims – Number of physical legs per site (default array.ndim) or iterable over number of
physical legs

• has_virtual (bool) – True if array already has indices for the left and right virtual
legs

classmethod from_array_global(array, ndims=None, has_virtual=False)
Create MPA from array in global form.

See mpnum.tools.global_to_local() for global vs. local form.

Parameters and return value: See from_array(). has_virtual=True is not supported yet.

classmethod from_kron(factors)
Returns the (exact) representation of an n-fold Kronecker (tensor) product as MPA with ranks 1 and n sites.

Parameters factors – A list of arrays with arbitrary number of physical legs

Returns The kronecker product of the factors as MPA

get(indices, astype=None)
Returns the current MPA but with the first index at each sites evaluated at the corresponding value of
indices

Parameters indices – Length len(self) sequence of index values for first physical leg at
each site

Returns type(self) object

group_sites(sites_per_group)
Group several MPA sites into one site.

The resulting MPA has length len(self) // sites_per_group and sites_per_group *
self.ndims[i] physical legs on site i. The physical legs on each sites are in local form.

Parameters sites_per_group (int) – Number of sites to be grouped into one

1.2. API reference 11

mpnum Documentation, Release git

Returns An MPA with sites_per_group fewer sites and more ndims

leg2vleg(pos)
Performs the inverse operation to vleg2leg().

Parameters pos – Number of the virtual to perform the transformation

Returns read-only MPA with transformed virtual

Todo: More appropriate naming for this functions?

classmethod load(source)
Deserializes MPArray from h5py.Group. Serialize using dump().

Parameters target – h5py.Group containing serialized MPArray or path to a single h5 File
containing serialized MPArray under /

lt

ndims
Tuple of number of legs per site

pad_ranks(rank=None, force_rank=False)
Increase rank by padding with zeros

This function is useful to prepare initial states for variational compression. E.g. for a five-qubit pure state
with ranks (2, 2, 4, 2) it is desirable to increase the ranks to (2, 4, 4, 2) before using it as an initial state for
variational compression.

Parameters

• rank (int) – Increase rank to this value, use max(self.rank) if None (default:
None)

• force_rank – Use full rank even at the beginning and end of the MPS. See
full_rank() for more details. (default: False)

Returns MPA representation of the same array with padded rank

ranks
Tuple of ranks

ravel()
Flatten the MPA to an MPS, shortcut for self.reshape((-1,))

reshape(newshapes)
Reshape physical legs in place.

Use shape to obtain the shape of the physical legs.

Parameters newshapes – A single new shape or a list of new shape. Alternatively, you can
pass ‘prune’ to get rid of all legs of dimension 1.

Returns Reshaped MPA

Todo: Why is this here? What’s wrong with the purne function?

reverse()

shape
List of tuples with the dimensions of each tensor leg at each site

12 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

singularvals()
Return singular values of self for all bipartitions

Returns Iterate over bipartitions with 1, 2, . . . len(self) - 1 sites on the left hand side. Yields a
np.ndarray containing singular values for each bipartition.

Note: May decrease the rank (without changing the represented tensor).

size
Returns the number of floating point numbers used to represent the MPArray

>>> from .factory import zero
>>> zero(sites=3, ldim=4, rank=3).lt.shape
((1, 4, 3), (3, 4, 3), (3, 4, 1))
>>> zero(sites=3, ldim=4, rank=3).size
60

split(pos)
Splits the MPA into two by transforming the virtual legs into local legs according to vleg2leg().

Parameters pos – Number of the virtual to perform the transformation

Returns (mpa_left, mpa_right)

split_sites(sites_per_group)
Split MPA sites into several sites.

The resulting MPA has length len(self) * sites_per_group and self.ndims[i] //
sites_per_group indices on site i.

Parameters sites_per_group (int) – Split each site in that many sites

Returns An mpa with sites_per_group more sites and fewer ndims

sum(axes=None)
Element-wise sum over physical legs

Parameters axes – Physical legs to sum over

axes can have the following values:

• Sequence of length zero: Sum over nothing

• Sequence of (sequences or None): axes[i] specifies the physical legs to sum over at site i; None
sums over all physical legs at a site

• Sequence of integers: axes specifies the physical legs to sum over at each site

• Single integer: Sum over physical leg axes at each site

• None: Sum over all physical legs at each site

To not sum over any axes at a certain site, specify the empty sequence for that site.

to_array()
Return MPA as array in local form.

See mpnum.tools.global_to_local() for global vs. local form.

Returns ndarray of shape sum(self.shape, ())

Note: Full arrays can require much more memory than MPAs. (That’s why you are using MPAs, right?)

1.2. API reference 13

mpnum Documentation, Release git

to_array_global()
Return MPA as array in global form.

See mpnum.tools.global_to_local() for global vs. local form.

Returns ndarray of shape sum(zip(*self.shape, ()))

See to_array() for more details.

transpose(axes=None)
Transpose (=reverse order of) physical legs on each site

Parameters axes – New order of the physical axes. If None is passed, we reverse the order of
the legs on each site. (default None)

>>> from .factory import random_mpa
>>> mpa = random_mpa(2, (2, 3, 4), 2)
>>> mpa.shape
((2, 3, 4), (2, 3, 4))
>>> mpa.transpose((2, 0, 1)).shape
((4, 2, 3), (4, 2, 3))

vleg2leg(pos)
Transforms the virtual leg between site pos and pos + 1 into local legs at those sites. The new leg will
be the rightmost one at site pos and the leftmost one at site pos + 1. The new rank is 1.

Also see leg2vleg().

Parameters pos – Number of the virtual to perform the transformation

Returns MPA with transformed virtual

Todo: More appropriate naming for this functions?

mpnum.mparray.dot(mpa1, mpa2, axes=(-1, 0), astype=None)

Compute the matrix product representation of the contraction of a and b over the given axes. [Sch11, Sec.
4.2]

Parameters

• mpa2 (mpa1,) – Factors as MPArrays

• axes – Tuple (ax1, ax2) where ax1 (ax2) is a single physical leg number or sequence
of physical leg numbers referring to mpa1 (mpa2). The first (second, etc) entries of ax1 and
ax2 will be contracted. Very similar to the axes argument for numpy.tensordot().
(default: (-1, 0))

Note: Note that the default value of axes is different compared to numpy.tensordot().

Parameters astype – Return type. If None, use the type of mpa1

Returns Dot product of the physical arrays

mpnum.mparray.inject(mpa, pos, num=None, inject_ten=None)
Interleaved chain product of an MPA and a rank 1 MPA

14 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

Return the chain product between mpa and num copies of the local tensor inject_ten, but place the copies
of inject_ten before site pos inside or outside mpa. You can also supply num = None and a sequence
of local tensors. All legs of the local tensors are interpreted as physical legs. Placing the local tensors at the
beginning or end of mpa using pos = 0 or pos = len(mpa) is also supported, but chain() is preferred
for that as it is a much simpler function.

If inject_ten is omitted, use a square identity matrix of size mpa.shape[pos][0]. If pos ==
len(mpa), mpa.shape[pos - 1][0] will be used for the size of the matrix.

Parameters

• mpa – An MPA.

• pos – Inject sites into the MPA before site pos.

• num – Inject num copies. Can be None; in this case inject_ten must be a sequence of
values.

• inject_ten – Physical tensor to inject (if omitted, an identity matrix will be used; cf.
above)

Returns The chain product

pos can also be a sequence of positions. In this case, num and inject_ten must be either sequences
or None, where None is interpreted as len(pos) * [None]. As above, if num[i] is None, then
inject_ten[i] must be a sequence of values.

mpnum.mparray.inner(mpa1, mpa2)
Compute the inner product <mpa1|mpa2>. Both have to have the same physical dimensions. If these represent
a MPS, inner(...) corresponds to the canoncial Hilbert space scalar product. If these represent a MPO,
inner(...) corresponds to the Frobenius scalar product (with Hermitian conjugation in the first argument)

Parameters

• mpa1 – MPArray with same number of physical legs on each site

• mpa2 – MPArray with same physical shape as mpa1

Returns <mpa1|mpa2>

mpnum.mparray.local_sum(mpas, embed_tensor=None, length=None, slices=None)
Embed local MPAs on a linear chain and sum as MPA.

We return the sum over embed_slice(length, slices[i], mpas[i], embed_tensor) as
MPA.

If slices is omitted, we use regular_slices(length, width, offset) with offset = 1,
width = len(mpas[0]) and length = len(mpas) + width - offset.

If slices is omitted or if the slices just described are given, we call _local_sum_identity(), which
gives a smaller virtual dimension than naive embedding and summing.

Parameters

• mpas – List of local MPAs.

• embed_tensor – Defaults to square identity matrix (see
_embed_ltens_identity() for details)

• length – Length of the resulting chain, ignored unless slices is given.

• slices – slice[i] specifies the position of mpas[i], optional.

Returns An MPA.

1.2. API reference 15

mpnum Documentation, Release git

mpnum.mparray.localouter(a, b)
Computes the tensor product of 𝑎⊗ 𝑏 locally, that is when a and b have the same number of sites, the new local
tensors are the tensorproducts of the original ones.

Parameters

• a (MPArray) – MPArray

• b (MPArray) – MPArray of same length as a

Returns Tensor product of a and b in terms of their local tensors

mpnum.mparray.norm(mpa)
Computes the norm (Hilbert space norm for MPS, Frobenius norm for MPO) of the matrix product operator. In
contrast to mparray.inner, this can take advantage of the canonicalization

WARNING This also changes the MPA inplace by normalizing.

Parameters mpa – MPArray

Returns l2-norm of that array

mpnum.mparray.normdist(mpa1, mpa2)
More efficient version of norm(mpa1 - mpa2)

Parameters

• mpa1 – MPArray

• mpa2 – MPArray

Returns l2-norm of mpa1 - mpa2

mpnum.mparray.chain(mpas, astype=None)
Computes the tensor product of MPAs given in *args by adding more sites to the array.

Parameters

• mpas – Iterable of MPAs in the order as they should appear in the chain

• astype – dtype of the returned MPA. If None, use the type of the first MPA.

Returns MPA of length len(args[0]) + ... + len(args[-1])

Todo: Make this canonicalization aware

Todo: Raise warning when casting complex to real dtype

mpnum.mparray.partialdot(mpa1, mpa2, start_at, axes=(-1, 0))
Partial dot product of two MPAs of inequal length.

The shorter MPA will start on site start_at. Local dot products will be carried out on all sites of the shorter
MPA. Other sites will remain unmodified.

mpa1 and mpa2 can also have equal length if start_at == 0. In this case, we do the same as dot().

Parameters

• mpa2 (mpa1,) – Factors as MPArrays, length must be inequal.

• start_at – The shorter MPA will start on this site.

• axes – See axes argument to dot().

16 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

Returns MPA with length of the longer MPA.

mpnum.mparray.partialtrace(mpa, axes=(0, 1), mptype=None)
Computes the trace or partial trace of an MPA.

This function is most useful for computing traces of an MPO or MPA over given physical legs. For obtaining
partial traces (i.e., reduced states) of an MPO, mpnum.mpsmpo.reductions_mpo() will be more conve-
nient.

By default (axes=(0, 1)) compute the trace and return the value as length-one MPA with zero physical
legs.

For axes=(m, n) with integer m, trace over the given axes at all sites and return a length-one MPA with zero
physical legs. (Use trace() to get the value directly.)

For axes=(axes1, axes2, ...) trace over axesN at site N, with axesN=(axisN_1, axisN_2)
tracing the given physical legs and axesN=None leaving the site invariant. Afterwards, prune() is called to
remove sites with zero physical legs from the result.

Parameters

• mpa – MPArray

• axes – Axes for trace, (axis1, axis2) or (axes1, axes2, . . .) with axesN=(axisN_1, axisN_2)
or axesN=None.

• mptype – Which constructor to call with the new local tensors (default: type(mpa))

Returns An MPArray (possibly one site with zero physical legs)

mpnum.mparray.prune(mpa, singletons=False)
Contract sites with zero (physical) legs.

Parameters

• mpa (MPArray) – MPArray or iterator over local tensors

• singletons – If True, also contract sites where all physical legs have size 1 (default:
False)

Returns An MPArray (of possibly smaller length)

mpnum.mparray.regular_slices(length, width, offset)
Iterate over regular slices on a linear chain.

Put slices on a linear chain as follows:

>>> n = 5
>>> [tuple(range(*s.indices(n))) for s in regular_slices(n, 3, 2)]
[(0, 1, 2), (2, 3, 4)]
>>> n = 7
>>> [tuple(range(*s.indices(n))) for s in regular_slices(n, 3, 2)]
[(0, 1, 2), (2, 3, 4), (4, 5, 6)]

The scheme is illustrated by the following figure:

width
offset overlap offset

####### width ######

1.2. API reference 17

mpnum Documentation, Release git

Todo: This table needs cell borders in the HTML output (-> CSS) and the tabularcolumns command doesn’t
work.

Note that the overlap may be larger than, equal to or smaller than zero.

We enforce that the last slice coincides with the end of the chain, i.e. (length - width) / offset must
be integer. We produce (length - width) / offset + 1 slices and the i-th slice is slice(offset
* i, offset * i + width), with i starting at zero.

Parameters

• length (int) – The length of the chain.

• width (int) – The width of each slice.

• offset (int) – Difference between starting positions of successive slices. First slice starts
at 0.

Returns Iterator over slices.

mpnum.mparray.sandwich(mpo, mps, mps2=None)
Compute <mps|MPO|mps> efficiently

This function computes the same value as mp.inner(mps, mp.dot(mpo, mps)) in a more efficient
way.

The runtime of this method scales with D**3 * Dp + D**2 * Dp**3 where D and Dp are the ranks of
mps and mpo. This is more efficient than mp.inner(mps, mp.dot(mpo, mps)), whose runtime scales
with D**4 * Dp**3, and also more efficient than mp.dot(mps.conj(), mp.dot(mpo, mps)).
to_array(), whose runtime scales with D**6 * Dp**3.

If mps2 is given, <mps2|MPO|mps> is computed instead (i.e. mp.inner(mps2, mp.dot(mpo,
mps)); see also dot()).

mpnum.mparray.embed_slice(length, slice_, mpa, embed_tensor=None)
Embed a local MPA on a linear chain.

Parameters

• length (int) – Length of the resulting MPA.

• slice (slice) – Specifies the position of mpa in the result.

• mpa (MPArray) – MPA of length slice_.stop - slice_.start.

• embed_tensor – Defaults to square identity matrix (see
_embed_ltens_identity() for details)

Returns MPA of length length

mpnum.mparray.trace(mpa, axes=(0, 1))
Compute the trace of the given MPA.

If you specify axes (see partialtrace() for details), you must ensure that the result has no physical legs anywhere.

Parameters

• mpa – MParray

• axes – Axes for trace, (axis1, axis2) or (axes1, axes2, ...) with
axesN=(axisN_1, axisN_2) or axesN=None. (default: (0, 1))

Returns A single scalar of type mpa.dtype

18 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

mpnum.mparray.diag(mpa, axis=0)
Returns the diagonal elements mpa[i, i, ..., i]. If mpa has more than one physical dimension, the
result is a numpy array with MPArray entries, otherwise its a numpy array with floats.

Parameters

• mpa – MPArray with shape > axis

• axis – The physical index to take diagonals over

Returns Array containing the diagonal elements (each diagonal element is an MPArray with the
physical dimension reduced by one, note that an MPArray with dimension 0 is a simple num-
ber)

mpnum.mparray.sumup(mpas, weights=None)
Returns the sum of the MPArrays in mpas. Same as

functools.reduce(mp.MPArray.__add__, mpas)

but should be faster as we can get rid of intermediate allocations.

Parameters mpas – Iterator over MPArray

Returns Sum of mpas

mpnum.mparray.full_rank(ldims)
Computes a list of maximal ranks for a tensor with given local dimesions

Parameters ldims – Dimensions of the legs of the tensor per site. Can be either passed as one
number per site ([2, 5, 2]) or if there are multiple legs per site as a list of tuples similar to
MPArray.shape (e.g. [(2,), (3, 4), (5,)]))

Returns Tuple of ranks that are maximal for the local dimensions ldims.

>>> full_rank([3] * 5)
[3, 9, 9, 3]
>>> full_rank([2] * 8)
[2, 4, 8, 16, 8, 4, 2]
>>> full_rank([(2, 3)] * 4)
[6, 36, 6]

1.2.3 mpstruct

Core data structure & routines to manage local tensors

class mpnum.mpstruct.LocalTensors(ltens, cform=(None, None))
Bases: object

Core data structure to manage the local tensors of a MPArray .

The local tensors are kept in _ltens, a list of numpy.ndarrays such that _ltens[i] corresponds to the
local tensor of site i.

If there are 𝑘 (non-virtual) indices at site 𝑖, the corresponding local tensor is a ndarray with ndim == k + 2.
The two additional indices of the local tensor correspond to the virtual legs. We reserve the 0th index of the
local tensor for the virtal leg coupling to site 𝑖− 1 and the last index for the virtual leg coupling to site 𝑖+ 1.

Therefore, if the physical legs at site 𝑖 have dimensions 𝑑1, . . . , 𝑑𝑘, the corresponding local tensor has shape
(𝑟𝑖−1, 𝑑1, . . . , 𝑑𝑘, 𝑟𝑖). Here, 𝑟𝑖−1 and 𝑟𝑖 denote the rank between sites (𝑖− 1, 𝑖) and (𝑖, 𝑖+ 1), respectively.

To keep the data structure consistent, we include the left virutal leg of the leftmost local tensor as well as the
right virtual leg of the rightmost local tensor as dummy indices of dimension 1.

1.2. API reference 19

mpnum Documentation, Release git

canonical_form
Tensors which are currently in left/right-canonical form.

Returns tuple (left, right) such that

• self[:left] are left-normalized

• self[right:] are right-normalized.

copy()
Returns a deep copy of the local tensors

shape
List of tuples with the dimensions of each tensor leg at each site

update(index, tens, canonicalization=None)
Update the local tensor at site index to the new value tens. Checks the rank and shape of the new values
to keep the MPA consistent. Therefore, some actions such as changing the rank between two sites require
to update both sites at the same time, which can be done by passing in multiple values as arguments.

Parameters

• index – Integer/slice. Site index/indices of the local tensor/ tensors to be updated.

• tens – New local tensor as numpy.ndarray. Alternatively, sequence over multiple
ndarrays (in case index is a slice).

• canonicalization – If tens is left-/right-normalized, pass 'left'/'right', re-
spectively. Otherwise, pass None (default None). In case index is a slice, either pass
a sequence of the corresponding values or a single value, which is repeated for each site
updated.

1.2.4 factory

Module to create random test instances of matrix product arrays

mpnum.factory.eye(sites, ldim)
Returns a MPA representing the identity matrix

Parameters

• sites – Number of sites

• ldim – Int-like local dimension or iterable of local dimensions

Returns Representation of the identity matrix as MPA

>>> I = eye(4, 2)
>>> I.ranks, I.shape
((1, 1, 1), ((2, 2), (2, 2), (2, 2), (2, 2)))
>>> I = eye(3, (3, 4, 5))
>>> I.shape
((3, 3), (4, 4), (5, 5))

mpnum.factory.random_local_ham(sites, ldim=2, intlen=2, randstate=None)
Generates a random Hamiltonian on sites sites with local dimension ldim, which is a sum of local Hamiltonians
with interaction length intlen.

Parameters

• sites – Number of sites

• ldim – Local dimension

20 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

• intlen – Interaction length of the local Hamiltonians

Returns MPA representation of the global Hamiltonian

mpnum.factory.random_mpa(sites, ldim, rank, randstate=None, normalized=False, force_rank=False,
dtype=<class ’numpy.float64’>)

Returns an MPA with randomly choosen local tensors (real by default)

Parameters

• sites – Number of sites

• ldim – Physical legs, depending on the type passed:

– scalar: Single physical leg for each site with given dimension

– iterable of scalar: Same physical legs for all sites

– iterable of iterable: Generated MPA will have exactly this as ndims

• rank – Desired rank, depending on the type passed:

– scalar: Same rank everywhere

– iterable of length sites - 1: Generated MPA will have exactly this as ranks

• randstate – numpy.random.RandomState instance or None

• normalized – Resulting mpa has mp.norm(mpa) == 1

• force_rank – If True, the rank is exaclty rank. Otherwise, it might be reduced if we
reach the maximum sensible rank.

• dtype – Type of the returned MPA. Currently only np.float_ and np.complex_ are
implemented (default: np.float_, i.e. real values).

Returns Randomly choosen matrix product array

Entries of local tensors are drawn from a normal distribution of unit variance. For complex values, the real and
imaginary parts are independent and have unit variance.

>>> mpa = random_mpa(4, 2, 10, force_rank=True)
>>> mpa.ranks, mpa.shape
((10, 10, 10), ((2,), (2,), (2,), (2,)))

>>> mpa = random_mpa(4, (1, 2), 10, force_rank=True)
>>> mpa.ranks, mpa.shape
((10, 10, 10), ((1, 2), (1, 2), (1, 2), (1, 2)))

>>> mpa = random_mpa(4, [(1,), (2, 3), (4, 5), (1,)], 10, force_rank=True)
>>> mpa.ranks, mpa.shape
((10, 10, 10), ((1,), (2, 3), (4, 5), (1,)))

The following doctest verifies that we do not change how random states are generated, ensuring reproducible
results. In addition, it verifies the returned dtype:

>>> rng = np.random.RandomState(seed=3208886881)
>>> random_mpa(2, 2, 3, rng).to_array()
array([[-0.7254321 , 3.44263486],

[-0.17262967, 2.4505633]])
>>> random_mpa(2, 2, 3, rng, dtype=np.complex_).to_array()
array([[-0.53552415+1.39701566j, -2.12128866+0.57913253j],

[-0.32652114+0.51490923j, -0.32222320-0.32675463j]])

1.2. API reference 21

mpnum Documentation, Release git

mpnum.factory.random_mpdo(sites, ldim, rank, randstate=<module ’numpy.random’ from
’/usr/lib/python3/dist-packages/numpy/random/__init__.py’>)

Returns a randomly choosen matrix product density operator (i.e. positive semidefinite matrix product operator
with trace 1).

Parameters

• sites – Number of sites

• ldim – Local dimension

• rank – Rank

• randstate – numpy.random.RandomState instance

Returns randomly choosen classicaly correlated matrix product density op.

>>> rho = random_mpdo(4, 2, 4)
>>> rho.ranks, rho.shape
((4, 4, 4), ((2, 2), (2, 2), (2, 2), (2, 2)))
>>> rho.canonical_form
(0, 4)

mpnum.factory.random_mps(sites, ldim, rank, randstate=None, force_rank=False)
Returns a randomly choosen normalized matrix product state

Parameters

• sites – Number of sites

• ldim – Local dimension

• rank – Rank

• randstate – numpy.random.RandomState instance or None

• force_rank – If True, the rank is exaclty rank. Otherwise, it might be reduced if we
reach the maximum sensible rank.

Returns randomly choosen matrix product (pure) state

>>> mps = random_mps(4, 2, 10, force_rank=True)
>>> mps.ranks, mps.shape
((10, 10, 10), ((2,), (2,), (2,), (2,)))
>>> mps.canonical_form
(0, 4)
>>> round(abs(1 - mp.inner(mps, mps)), 10)
0.0

mpnum.factory.random_mpo(sites, ldim, rank, randstate=None, hermitian=False, normalized=True,
force_rank=False)

Returns an hermitian MPO with randomly choosen local tensors

Parameters

• sites – Number of sites

• ldim – Local dimension

• rank – Rank

• randstate – numpy.random.RandomState instance or None

• hermitian – Is the operator supposed to be hermitian

• normalized – Operator should have unit norm

22 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

• force_rank – If True, the rank is exaclty rank. Otherwise, it might be reduced if we
reach the maximum sensible rank.

Returns randomly choosen matrix product operator

>>> mpo = random_mpo(4, 2, 10, force_rank=True)
>>> mpo.ranks, mpo.shape
((10, 10, 10), ((2, 2), (2, 2), (2, 2), (2, 2)))
>>> mpo.canonical_form
(0, 4)

mpnum.factory.zero(sites, ldim, rank, force_rank=False)
Returns a MPA with localtensors beeing zero (but of given shape)

Parameters

• sites – Number of sites

• ldim – Depending on the type passed (checked in the following order)

– iterable of iterable: Detailed list of physical dimensions, retured mpa will have exactly
this for mpa.shape

– iterable of scalar: Same physical dimension for each site

– scalar: Single physical leg for each site with given dimension

• rank – Rank

• force_rank – If True, the rank is exaclty rank. Otherwise, it might be reduced if we
reach the maximum sensible rank.

Returns Representation of the zero-array as MPA

mpnum.factory.diagonal_mpa(entries, sites)
Returns an MPA with entries on the diagonal and zeros otherwise.

Parameters entries (numpy.ndarray) – one-dimensional array

Returns MPArray with rank len(entries).

1.2.5 mpsmpo

Matrix Product State (MPS) and Operator (MPO) functions

The Introduction also covers the definitions mentioned below.

Definitions

We consider a linear chain of 𝑛 sites with associated Hilbert spaces mathcal H_k = C^{d_k}, 𝑑𝑘, 𝑘 ∈ [1..𝑛] :=
{1, 2, . . . , 𝑛}. The set of linear operators ℋ𝑘 → ℋ𝑘 is denoted by ℬ𝑘. We write ℋ = ℋ1 ⊗ · · · ⊗ ℋ𝑛 and the same
for ℬ.

We use the following three representations:

• Matrix product state (MPS): Vector |𝜓⟩ ∈ ℋ

• Matrix product operator (MPO): Operator 𝑀 ∈ ℬ

• Locally purified matrix product state (PMPS): Positive semidefinite operator 𝜌 ∈ ℬ

All objects are represented by 𝑛 local tensors.

1.2. API reference 23

mpnum Documentation, Release git

Matrix product state (MPS)

Represent a vector |𝜓⟩ ∈ ℋ as

⟨𝑖1 . . . 𝑖𝑛|𝜓⟩ = 𝐴
(1)
𝑖1

· · ·𝐴(𝑛)
𝑖𝑛
, 𝐴

(𝑘)
𝑖𝑘

∈ C𝐷𝑘−1×𝐷𝑘 , 𝐷0 = 1 = 𝐷𝑛.

The 𝑘-th local tensor is 𝑇𝑙,𝑖,𝑟 = (𝐴
(𝑘)
𝑖)𝑙,𝑟.

The vector |𝜓⟩ can be a quantum state, with the density matrix given by 𝜌 = |𝜓⟩⟨𝜓| ∈ ℬ. Reference: E.g. [Sch11].

Matrix product operator (MPO)

Represent an operator 𝑀 ∈ ℬ as

⟨𝑖1 . . . 𝑖𝑛|𝑀 |𝑗1 . . . 𝑗𝑛⟩ = 𝐴
(1)
𝑖1𝑗1

· · ·𝐴(𝑛)
𝑖𝑛𝑗𝑛

, 𝐴
(𝑘)
𝑖𝑘𝑗𝑘

∈ C𝐷𝑘−1×𝐷𝑘 , 𝐷0 = 1 = 𝐷𝑛.

The 𝑘-th local tensor is 𝑇𝑙,𝑖,𝑗,𝑟 = (𝐴
(𝑘)
𝑖𝑗)𝑙,𝑟.

This representation can be used to represent a mixed quantum state 𝜌 = 𝑀 , but it is not limited to positive semidefinite
𝑀 . Reference: E.g. [Sch11].

Locally purified matrix product state (PMPS)

Represent a positive semidefinite operator 𝜌 ∈ ℬ as follows: Let ℋ′
𝑘 = C𝑑′

𝑘 with suitable 𝑑′𝑘 and 𝒫 = ℋ1 ⊗ ℋ′
1 ⊗

· · · ⊗ ℋ𝑛 ⊗ℋ′
𝑛. Find |Φ⟩ ∈ 𝒫 such that

𝜌 = trℋ′
1,...,ℋ′

𝑛
(|Φ⟩⟨Φ|)

and represent |Φ⟩ as

⟨𝑖1𝑖′1 . . . 𝑖𝑛𝑖′𝑛|Φ⟩ = 𝐴
(1)
𝑖1𝑖′1

· · ·𝐴(𝑛)
𝑖𝑛𝑖′𝑛

, 𝐴
(𝑘)
𝑖𝑘𝑗𝑘

∈ C𝐷𝑘−1×𝐷𝑘 , 𝐷0 = 1 = 𝐷𝑛.

The 𝑘-th local tensor is 𝑇𝑙,𝑖,𝑖′,𝑟 = (𝐴
(𝑘)
𝑖𝑖′)𝑙,𝑟.

The ancillary dimensions 𝑑′𝑖 are not determined by the 𝑑𝑖 but depend on the state. E.g. if 𝜌 is pure, one can set all
𝑑𝑖 = 1. Reference: E.g. [Cue13].

Todo: Are derived classes MPO/MPS/PMPS of any help?

Todo: I am not sure the current definition of PMPS is the most elegant for our purposes. . .

References:

• [Cue13] De las Cuevas, G., Schuch, N., Pérez-García, D., and Cirac, J. I. (2013). “Purifications of multi-
partite states: limitations and constructive methods”. New J. Phys. 15(12), p. 123021. DOI: 10.1088/1367-
2630/15/12/123021. arXiv: 1308.1914.

mpnum.mpsmpo.mps_to_mpo(mps)
Convert a pure MPS to a mixed state MPO.

Parameters mps (MPArray) – An MPA with one physical leg

Returns An MPO (density matrix as MPA with two physical legs)

24 Chapter 1. A matrix product representation library for Python

http://dx.doi.org/10.1088/1367-2630/15/12/123021
http://dx.doi.org/10.1088/1367-2630/15/12/123021
http://arxiv.org/abs/1308.1914

mpnum Documentation, Release git

mpnum.mpsmpo.mps_to_pmps(mps)
Convert a pure MPS into a local purification MPS mixed state.

The ancilla legs will have dimension one, not increasing the memory required for the MPS.

Parameters mps (MPArray) – An MPA with one physical leg

Returns An MPA with two physical legs (system and ancilla)

mpnum.mpsmpo.pmps_dm_to_array(pmps, global_=False)
Convert PMPS to full array representation of the density matrix

The runtime of this method scales with D**3 instead of D**6 where D is the rank and D**6 is the scaling of
using pmps_to_mpo() and to_array(). This is useful for obtaining reduced states of a PMPS on non-
consecutive sites, as normalizing before using pmps_to_mpo() may not be sufficient to reduce the rank in
that case.

Note: The resulting array will have dimension-1 physical legs removed.

mpnum.mpsmpo.pmps_reduction(pmps, support)
Convert a PMPS to a PMPS representation of a local reduced state

Parameters support – Set of sites to keep

Returns Sites traced out at the beginning or end of the chain are removed using
reductions_pmps() and a suitable normalization. Sites traced out in the middle of the
chain are converted to sites with physical dimension 1 and larger ancilla dimension.

mpnum.mpsmpo.pmps_to_mpo(pmps)
Convert a local purification MPS to a mixed state MPO.

A mixed state on n sites is represented in local purification MPS form by a MPA with n sites and two physical
legs per site. The first physical leg is a ‘system’ site, while the second physical leg is an ‘ancilla’ site.

Parameters pmps (MPArray) – An MPA with two physical legs (system and ancilla)

Returns An MPO (density matrix as MPA with two physical legs)

mpnum.mpsmpo.pmps_to_mps(pmps)
Convert a PMPS with unit ancilla dimensions to a simple MPS

If all ancilla dimensions of the PMPS are equal to unity, they are removed. Otherwise, an AssertionError is
raised.

mpnum.mpsmpo.reductions_mpo(mpa, width=None, startsites=None, stopsites=None)
Iterate over MPO partial traces of an MPO

The support of the i-th result is range(startsites[i], stopsites[i]).

Parameters

• mpa (mpnum.mparray.MPArray) – An MPO

• startsites – Defaults to range(len(mpa) - width + 1).

• stopsites – Defaults to [start + width for start in startsites].
If specified, we require startsites to be given and width to be None.

• width – Number of sites in support of the results. Default None. Must be specified if one
or both of startsites and stopsites are not given.

Returns Iterator over partial traces as MPO

1.2. API reference 25

mpnum Documentation, Release git

mpnum.mpsmpo.reductions_mps_as_mpo(mps, width=None, startsites=None, stopsites=None)
Iterate over MPO mpdoreduced states of an MPS

width, startsites and stopsites: See reductions_mpo().

Parameters mps – Pure state as MPS

Returns Iterator over reduced states as MPO

mpnum.mpsmpo.reductions_mps_as_pmps(mps, width=None, startsites=None, stopsites=None)
Iterate over PMPS reduced states of an MPS

width, startsites and stopsites: See reductions_mpo().

Parameters mps – Pure state as MPS

Returns Iterator over reduced states as PMPS

mpnum.mpsmpo.reductions_pmps(pmps, width=None, startsites=None, stopsites=None)
Iterate over PMPS partial traces of a PMPS

width, startsites and stopsites: See reductions_mpo().

Parameters pmps – Mixed state in locally purified MPS representation (PMPS, see Definitions)

Returns Iterator over reduced states as PMPS

mpnum.mpsmpo.reductions(state, mode, **kwargs)

Todo: Add docstring

1.2.6 linalg

Linear algebra with matrix product arrays

Currently, we support computing extremal eigenvalues and eigenvectors of MPOs.

mpnum.linalg.eig(mpo, num_sweeps, var_sites=2, startvec=None, startvec_rank=None, rand-
state=None, eigs=None)

Iterative search for MPO eigenvalues

Note: This function can return completely inaccurate values. You are responsible for supplying a large enough
startvec_rank (or startvec with large enough rank) and num_sweeps.

This function attempts to find eigenvalues by iteratively optimizing 𝜆 = ⟨𝜓|𝐻|𝜓⟩ where 𝐻 is the operator sup-
plied in the argument mpo. Specifically, we attempt to de- or increase 𝜆 by optimizing over several neighbouring
local tensors of the MPS |𝜓⟩ simultaneously (the number given by var_sites).

The algorithm used here is described e.g. in [Sch11, Sec. 6.3]. For var_sites = 1, it is called “variational
MPS ground state search” or “single-site DMRG” [Sch11, Sec. 6.3, p. 69]. For var_sites > 1, it is called
“multi-site DMRG”.

Parameters

• mpo (MPArray) – A matrix product operator (MPA with two physical legs)

• num_sweeps (int) – Number of sweeps to do (required)

• var_sites (int) – Number of neighbouring sites to be varied simultaneously

26 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

• startvec – Initial guess for eigenvector (default: random MPS with rank startvec_rank)

• startvec_rank – Rank of random start vector (required and used only if no start vector
is given)

• randstate – numpy.random.RandomState instance or None

• eigs – Function which computes one eigenvector of the local eigenvalue problem on
var_sites sites

Returns eigval, eigvec_mpa

The eigs parameter defaults to

eigs = functools.partial(scipy.sparse.linalg.eigsh, k=1, tol=1e-6)

By default, eig() computes the eigenvalue with largest magnitude. To compute e.g. the smallest eigenvalue
(sign included), supply which='SA' to eigsh. For other possible values, refer to the SciPy documentation.

It is recommendable to supply a value for the tol parameter of eigsh(). Otherwise, eigsh() will work at
machine precision which is rarely necessary.

Note: One should keep in mind that a variational method (such as the one implemented in this function) can
only provide e.g. an upper bound on the lowest eigenvalue of an MPO. Deciding whether a given MPO has an
eigenvalue which is smaller than a given threshold has been shown to be NP-hard (in the number of parameters
of the MPO representation) [KGE14].

Comments on the implementation, for var_sites = 1:

References are to the arXiv version of [Sch11] assuming we replace zero-based with one-based indices there.

Psi^A_{i-1} and Psi^B_{i} are identity matrices because of normalization. (See Fig. 42 on p. 67 and
the text; see also Figs. 14 and 15 and pages 28 and 29.)

mpnum.linalg.eig_sum(mpas, num_sweeps, var_sites=2, startvec=None, startvec_rank=None, rand-
state=None, eigs=None)

Iterative search for eigenvalues of a sum of MPOs/MPSs

Try to compute the ground state of the sum of the objects in mpas. MPOs are taken as-is. An MPS |𝜓⟩ adds
|𝜓⟩⟨𝜓| to the sum.

This function executes the same algorithm as eig() applied to an uncompressed MPO sum of the elements in
mpas, but it obtains the ingredients for the local optimization steps using less memory and execution time. In
particular, this function does not have to convert an MPS in mpas to an MPO.

Todo: Add information on how the runtime of eig() and eig_sum() scale with the the different ranks. For
the time being, refer to the benchmark test.

Parameters mpas – A sequence of MPOs or MPSs

Remaining parameters and description: See eig().

Algorithm: [Sch11, Sec. 6.3]

1.2. API reference 27

mpnum Documentation, Release git

1.2.7 povm

povm.mppovm

Matrix-product representation of POVMs

This module provides the following classes:

• MPPovm: A matrix product representation of a multi-site POVM.

For example, for a linear chain of n qubits this class can represent the POVM of the observable XX. . . X with 2𝑛

elements efficiently. It is also possible to sample from the probability distribution of this POVM efficiently.

• MPPovmList: A list of MP-POVMs.

This class can be used e.g. to obtain estimated expectation values of the local observable XX1. . . 1 on two
qubits from from samples for the global observables XX. . . X and XXY. . . Y (cf. below on Linear combinations
of functions of POVM outcomes).

• The methods MPPovm.embed(), MPPovm.block()/MPPovmList.block(), MPPovm.
repeat()/MPPovmList.repeat() as well as pauli_mpp() and pauli_mpps() allow for
convenient construction of MP-POVMs and MP-POVM lists.

Linear combinations of functions of POVM outcomes

In order to perform the just mentioned estimation of probabilities of one POVM from samples of another POVM with
possibly larger support, we provide a function which can estimate linear functions of functions of POVM outcomes:
Let𝑀 a finite index set with real elements 𝑦 ∈𝑀 ⊂ R such that 𝑦 are the positive semidefinite POVM elements which
sum to the identity,

∑︀
𝑦∈𝑀 𝑦 = 1. Given a state 𝜌, the probability mass function (PMF) of the probability distribution

given by the POVM and the state can be expressed as 𝑝𝑦 = tr(𝜌𝑦), 𝑦 ∈ 𝑀 or as 𝑝(𝑥) =
∑︀

𝑦∈𝑀 𝛿(𝑥 − 𝑦)𝑝𝑦 .
Let further 𝐷 = (𝑥1, . . . , 𝑥𝑚), 𝑥𝑘 ∈ 𝑀 a set of samples from 𝑝(𝑥) and let 𝑓 : 𝑀 → R an arbitrary function
of the POVM outcomes. The true value ⟨𝑓⟩𝑝 =

∫︀
𝑓(𝑦)𝑝(𝑦)d𝑦 can then be estimated using the sample average

⟨𝑓⟩𝐷 = 1
𝑚

∑︀𝑚
𝑘=1 𝑓(𝑥𝑘)𝑝𝑥𝑘

. In the same way, a linear combination 𝑓 =
∑︀
𝑐𝑖𝑓𝑖 of functions 𝑓𝑖 : 𝑀 → R of POVM

outcomes can be estimated by ⟨𝑓⟩𝐷 =
∑︀

𝑖 𝑐𝑖⟨𝑓𝑖⟩𝐷. Such a linear combination of functions of POVM outcomes can
be estimated using MPPovm.est_lfun(). More technically, the relation ⟨⟨𝑓⟩𝐷⟩𝑝𝑚

= ⟨𝑓⟩𝑝 shows that ⟨𝑓⟩𝐷 is an
unbiased estimator for the true expectation value ⟨𝑓⟩𝑝; the probability distribution of the dataset 𝐷 is given by the
sampling distribution 𝑝𝑚(𝐷) = 𝑝(𝑥1) . . . 𝑝(𝑥𝑚).

Estimates of the POVM probabilities 𝑝𝑦 can also be expressed as functions of this kind: Consider the function

𝜃𝑦(𝑥) =

{︃
1, 𝑥 = 𝑦,

0, otherwise.

The true value of this function under 𝑝(𝑥) is ⟨𝜃𝑦⟩𝑝 = 𝑝𝑦 and the sample average ⟨𝜃𝑦⟩𝐷 provides an estimator for 𝑝𝑦 .
In order to estimate probabilities of one POVM from samples for another POVM, such a function can be used: E.g. to
estimate the probability of the (+1,+1) outcome of the POVM XX1. . . 1, we can define a function which is equal to 1
if the outcome of the POVM XX. . . X on the first two sites is equal to (+1,+1) and zero otherwise. The sample average
of this function over samples for the latter POVM XX. . . X will estimate the desired probability. This approach is imple-
mented in MPPovm.est_pmf_from(). If samples from more than one POVM are available for estimating a given
probability, a weighted average of estimators can be used as implemented in MPPovm.est_pmf_from_mpps();
the list of MP-POVMs for which samples are available is passed as an MPPovmList instance. Finally, the func-
tion MPPovmList.est_lfun_from() allows estimation of a linear combination of probabilities from different
POVMs using samples of a second list of MP-POVMs. This function also estimates the variance of the estimate. In or-
der to perform the two estimation procedures, for each probability, we construct an estimator from a weighted average
of functions of outcomes of different POVMs, as has been explained above. For more simple settings, MPPovmList.
est_lfun() is also available.

28 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

True values of the functions just mentioned can be obtained from MPPovm.lfun(), MPPovmList.lfun() and
MPPovmList.lfun_from(). All functions return both the true expectation value and the variance of the expecta-
tion value.

The variance of the (true) expectation value ⟨𝑓⟩𝑝 of a function 𝑓 : 𝑀 → R is given by var𝑝(𝑓) = cov𝑝(𝑓, 𝑓) with
cov𝑝(𝑓, 𝑔) = ⟨𝑓𝑔⟩𝑝 − ⟨𝑓⟩𝑝⟨𝑔⟩𝑝. The variance of the estimate ⟨𝑓⟩𝐷 is given by var𝑝𝑚

(⟨𝑓⟩𝐷) = 1
𝑚 var𝑝(𝑓) where

𝑝𝑚(𝐷) is the sampling distribution from above. An unbiased estimator for the covariance cov𝑝(𝑓, 𝑔) is given by
𝑚

𝑚−1 cov𝐷(𝑓, 𝑔) where the sample covariance cov𝐷(𝑓, 𝑔) is defined in terms of sample averages in the usual way,
cov𝐷(𝑓, 𝑔) = ⟨𝑓𝑔⟩𝐷 − ⟨𝑓⟩𝐷⟨𝑔⟩𝐷. This estimator is used by MPPovm.est_lfun().

Todo: Explain the details of the variance estimation, in particular the difference between the variances returned from
MPPovmList.lfun() and MPPovmList.lfun_from(). Check the mean square error.

Add a good references explaining all facts mentioned above and for further reading.

Document the runtime and memory cost of the functions.

Class and function reference

class mpnum.povm.mppovm.MPPovm(*args, **kwargs)
Bases: mpnum.mparray.MPArray

MPArray representation of multipartite POVM

There are two different ways to write down a POVM in matrix product form

1. As a list of matrix product operators, where each entry corresponds to a single POVM element

2. As a matrix proudct array with 3 physical legs:

[POVM index, column index, row index]

that is, the first physical leg of the MPArray corresponds to the index of the POVM element. This repre-
sentation is especially helpful for computing expectation values with MPSs/MPDOs.

Here, we choose the second.

Todo: This class should provide a function which returns expectation values as full array. (Even though
computing expectation values using the POVM struture brings advantages, we usually need the result as full
array.) This function should also replace small negative probabilities by zero and canonicalize the sum of all
probabilities to unity (if the deviation is non-zero but small). The same checks should also be implemented in
localpovm.POVM.

Todo: Right now we use this class for multi-site POVMs with elements obtained from every possible combina-
tion of the elements of single-site POVMs: The POVM index is split across all sites. Explore whether and how
this concept can also be useful in other cases.

block(nr_sites)
Embed an MP-POVM on local blocks

The returned MPPovmList will contain self embedded at every possible position on len(self) neighbour-
ing sites in a chain of length nr_sites. The remaining sites are not measured (self.embed()).

self must a have a uniform local Hilbert space dimension.

1.2. API reference 29

mpnum Documentation, Release git

Parameters nr_sites – Number of sites of the resulting MP-POVMs

block_pmfs_as_array(state, mode, asarray=False, eps=1e-10, **redarg)

Todo: Add docstring

elements
Returns an iterator over all POVM elements. The result is the i-th POVM element in MPO form.

It would be nice to call this method __iter__, but this breaks mp.dot(mppovm, . . .). In addition,
next(iter(mppovm)) would not be equal to mppovm[0].

embed(nr_sites, startsite, local_dim)
Embed MP-POVM into larger system

Applying the resulting embedded MP-POVM to a state rho gives the same result as applying the original
MP-POVM self on the reduced state of sites range(startsite, startsite + len(self)) of rho.

Parameters

• nr_sites – Number of sites of the resulting MP-POVM

• startsite – Position of the first site of self in the resulting MP-POVM

• local_dim – Local dimension of sites to be added

Returns MP-POVM with self on sites range(startsite, startsite + len(self)) and MPPovm.
eye() elsewhere

est_lfun(coeff, funs, samples, weights=None, eps=1e-10)
Estimate a linear combination of functions of POVM outcomes

This function estimates the function with exact value given by MPPovm.lfun(); see there for description
of the parameters coeff and funs.

Parameters

• samples (np.ndarray) – A shape (n_samples, len(self.nsoutdims)) with samples from
self

• weights – A length n_samples array for weighted samples. You can submit counts by
passing them as weights. The number of samples used in average and variance estimation
is determined by weights.sum() if weights is given.

Returns (est, var): Estimated value and estimated variance of the estimated value. For details,
see Linear combinations of functions of POVM outcomes.

est_pmf(samples, normalize=True, eps=1e-10)
Estimate probability mass function from samples

Parameters

• samples (np.ndarray) – (n_samples, len(self.nsoutdims)) array of samples

• normalize (bool) – True: Return normalized probability estimates (default). False:
Return integer outcome counts.

Returns Estimated probabilities as ndarray est_pmf with shape self.nsoutdims

n_samples * est_pmf[i1, . . . , ik] provides the number of occurences of outcome (i1, . . . , ik) in samples.

30 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

est_pmf_from(other, samples, eps=1e-10)
Estimate PMF from samples of another MPPovm other

If other does not provide information on all elements in self, we require that the elements in self for which
information is provided sum to a multiple of the identity.

Example: If we consider the MPPovm MPPovm.from_local_povm(x, n) for given local POVMs
x, it is possible to obtain counts for the Pauli X part of x = pauli_povm() from samples for x =
x_povm(); this is also true if the latter is supported on a larger part of the chain.

Parameters

• other (MPPovm) – Another MPPovm

• samples (np.ndarray) – (n_samples, len(other.nsoutdims)) array of samples for
other

Returns (est_pmf, n_samples_used). est_pmf : Shape self.nsoutdims ndarray of normalized
probability estimates; the sum over the available probability estimates is equal to the fraction
of the identity obtained by summing the corresponding POVM elements. n_samples_used:
Number of samples which have contributed to the PMF estimate.

est_pmf_from_mpps(other, samples, eps=1e-10)
Estimate probability mass function from MPPovmList samples

Parameters

• other (MPPovmList) – An MPPovmList instance

• samples – Iterable of samples (e.g. from MPPovmList.samples())

Returns (p_est, n_samples_used), both are shape self.nsoutdims ndarrays. p_est provides esti-
mated probabilities and n_samples_used provides the effective number of samples used for
each probability.

expectations(mpa, mode=’auto’)
Computes the exp. values of the POVM elements with given state

Parameters

• mpa – State given as MPDO, MPS, or PMPS

• mode – In which form mpa is given. Possible values: ‘mpdo’, ‘pmps’, ‘mps’, or ‘auto’. If
‘auto’ is passed, we choose between ‘mps’ or ‘mpdo’ depending on the number of physical
legs

Returns Iterator over the expectation values, the n-th element is the expectation value corre-
ponding to the reduced state on sites [n,. . . ,n + len(self) - 1]

classmethod eye(local_dims)
Construct MP-POVM with no output or measurement

Corresponds to taking the partial trace of the quantum state and a shorter MP-POVM.

Parameters local_dims – Iterable of local dimensions

classmethod from_local_povm(lelems, width)
Generates a product POVM on width sites.

Parameters

• lelems – POVM elements as an iterator over all local elements (i.e. an iterator over
numpy arrays representing the latter)

• width (int) – Number of sites the POVM lives on

1.2. API reference 31

mpnum Documentation, Release git

Returns MPPovm which is a product POVM of the lelems

hdims
Local Hilbert space dimensions

lfun(coeff, funs, state, mode=’auto’, eps=1e-10)
Evaluate a linear combination of functions of POVM outcomes

Parameters

• coeff (np.ndarray) – A length n_funs array with the coefficients of the linear com-
bination. If None, return the estimated values of the individual functions and the estimated
covariance matrix of the estimates.

• funs (np.ndarray) – A length n_funs sequence of functions. If None, the estimated
function will be a linear function of the POVM probabilities.

For further information, see also Linear combinations of functions of POVM outcomes.

The parameters state and mode are passed to MPPovm.pmf().

Returns (value, var): Expectation value and variance of the expectation value

match_elems(other, exclude_dup=(), eps=1e-10)
Find POVM elements in other which have information on self

We find all POVM sites in self which have only one possible outcome. We discard these outputs in other
and afterwards check other and self for any common POVM elements.

Parameters

• other – Another MPPovm

• exclude_dup – Sequence which can include ‘self’ or ‘other’ (or both) to assert that
there are no linearly dependent pairs of elements in self or other.

• eps – Threshould for values which should be treated as zero

Returns (matches, prefactors)

matches[i_1, . . . , i_k, j_1, . . . , j_k] specifies whether outcome (i_1, . . . , i_k) of self has the same POVM
element as the partial outcome (j_1, . . . , j_k) of other; outcomes are specified only on the sites mentioned
in sites such that k = len(sites).

prefactors[i_1, . . . , i_k, j_1, . . . , j_k] specifies how samples from other have to be weighted to correspond
to samples for self.

nsoutdims
Non-singleton outcome dimensions (dimension larger one)

nsoutpos
Sites with non-singleton outcome dimension (dimension larger one)

outdims
Outcome dimensions

pack_samples(samples, dtype=None)
Pack samples into one integer per sample

Store one sample in a single integer instead of a list of integers with length len(self.nsoutdims). Example:

>>> p = pauli_mpp(nr_sites=2, local_dim=2)
>>> p.outdims
(6, 6)

32 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

>>> p.pack_samples(np.array([[0, 1], [1, 0], [1, 2], [5, 5]]))
array([1, 6, 8, 35])

pmf(state, mode=’auto’)
Compute the POVM’s probability mass function for state

If you want to compute the probabilities for reduced states of state, you can use MPPovm.
expectations() instead of this function.

Parameters

• state (mp.MPArray) – A quantum state as MPA. Must have the same length as self.

• mode – ‘mps’, ‘mpdo’ or ‘pmps’. See MPPovm.expectations().

Returns Probabilities as MPArray

pmf_as_array(state, mode=’auto’, eps=1e-10, impl=’auto’)
Compute the POVM’s PMF for state as full array

Parameters: See MPPovm.pmf().

Parameters impl – ‘auto’, ‘default’, ‘pmps-symm’ or ‘pmps-ltr’. ‘auto’ will use ‘pmps-symm’
for mode ‘pmps’ and ‘default’ otherwise.

Returns PMF as shape self.nsoutdims ndarray

The resulting (real or complex) probabilities pmf are passed through project_pmf(pmf, eps,
eps) before being returned.

pmfs_as_array(states, mode, asarray=False, eps=1e-10)

Todo: Add docstring

probability_map
Map that takes a raveled MPDO to the POVM probabilities

You can use MPPovm.expectations() or MPPovm.pmf() as convenient wrappers around this map.

If rho is a matrix product density operator (MPDO), then

produces the POVM probabilities as MPA (similar to mpnum.povm.localpovm.POVM.
probability_map()).

repeat(nr_sites)
Construct a longer MP-POVM by repetition

The resulting POVM will have length nr_sites. If nr_sites is not an integer multiple of len(self), self must
factorize (have leg dimension one) at the position where it will be cut. For example, consider the tensor
product MP-POVM of Pauli X and Pauli Y. Calling repeat(nr_sites=5) will construct the tensor product
POVM XYXYX:

>>> import mpnum as mp
>>> import mpnum.povm as mpp
>>> x, y = (mpp.MPPovm.from_local_povm(lp(3), 1) for lp in
... (mpp.x_povm, mpp.y_povm))
>>> xy = mp.chain([x, y])
>>> xyxyx = mp.chain([x, y, x, y, x])
>>> mp.norm(xyxyx - xy.repeat(5)) <= 1e-10
True

1.2. API reference 33

mpnum Documentation, Release git

sample(rng, state, n_samples, method=’cond’, n_group=1, mode=’auto’, pack=False, eps=1e-10)
Random sample from self on a quantum state

Parameters

• state (mp.MPArray) – A quantum state as MPA (see mode)

• n_samples – Number of samples to create

• method – Sampling method (‘cond’ or ‘direct’, see below)

• n_group – Number of sites to sample at a time in conditional sampling.

• mode – Passed to MPPovm.expectations()

• eps – Threshold for small values to be treated as zero.

Two different sampling methods are available:

• Direct sampling (method=’direct’): Compute probabilities for all outcomes and sample from the full
probability distribution. Usually faster than conditional sampling for measurements on a small number
of sites. Requires memory linear in the number of possible outcomes.

• Conditional sampling (method=’cond’): Sample outcomes on all sites by sampling from conditional
outcome probabilities on at most n_group sites at a time. Requires memory linear in the number of
outcomes on n_group sites. Useful for measurements which act on large parts of a system (e.g. Pauli
X on each spin).

Returns ndarray samples with shape (n_samples, len(self.nsoutdims))

The i-th sample is given by samples[i, :]. samples[i, j] is the outcome for the j-th non-singleton output
dimension of self.

unpack_samples(samples)
Unpack samples into several integers per sample

Inverse of MPPovm.pack_samples(). Example:

>>> p = pauli_mpp(nr_sites=2, local_dim=2)
>>> p.outdims
(6, 6)
>>> p.unpack_samples(np.array([0, 6, 7, 12]))
array([[0, 0],

[1, 0],
[1, 1],
[2, 0]], dtype=uint8)

class mpnum.povm.mppovm.MPPovmList(mppseq)
Bases: object

A list of Matrix Product POVMs

This class allows you to

• Conveniently obtain samples and estimated or exact probabilities for a list of MPPovms

• Estimate probabilities from samples for a different MPPovmList

• Estimate linear functions of probabilities of an MPPovmList from samples for a different MPPovmList

__init__(mppseq)
Construct a MPPovmList

Parameters mppseq – An iterable of MPPovm objects

34 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

All MPPovms must have the same number of sites.

block(nr_sites)
Embed MP-POVMs on local blocks

This function calls MPPovm.block(nr_sites)() for each MP-POVM in the list. Embedded MP-
POVMs at the same position appear consecutively in the returned list:

>>> import mpnum as mp
>>> import mpnum.povm as mpp
>>> ldim = 3
>>> x, y = (mpp.MPPovm.from_local_povm(lp(ldim), 1) for lp in
... (mpp.x_povm, mpp.y_povm))
>>> e = mpp.MPPovm.eye([ldim])
>>> xx = mp.chain([x, x])
>>> xy = mp.chain([x, y])
>>> mppl = mpp.MPPovmList((xx, xy))
>>> xxe = mp.chain([x, x, e])
>>> xye = mp.chain([x, y, e])
>>> exx = mp.chain([e, x, x])
>>> exy = mp.chain([e, x, y])
>>> expect = (xxe, xye, exx, exy)
>>> [abs(mp.norm(a - b)) <= 1e-10
... for a, b in zip(mppl.block(3).mpps, expect)]
[True, True, True, True]

block_pmfs_as_array(state, mode, asarray=False, eps=1e-10, **redarg)

Todo: Add docstring

est_lfun(coeff, funs, samples, weights=None, eps=1e-10)
Estimate a linear combination of functions of POVM outcomes

Parameters

• coeff – Iterable of coefficient lists

• funs – Iterable of function lists

• samples – Iterable of samples

• weights – Iterable of weight lists or None

The i-th item from these parameters is passed to MPPovm.est_lfun() on self.mpps[i].est_lfun.

Returns (est, var): Estimated value est and estimated variance var of the estimate est

est_lfun_from(other, coeff, samples, eps=1e-10)
Estimate a linear function from samples for another MPPovmList

The function to estimate is a linear function of the probabilities of self and it is specified by coeff. Its
true expectation value and variance are returned by MPPovmList.lfun_from(). First, an estimator
is constructed using MPPovmList._lfun_estimator() and this estimator is passed to MPPovm.
est_lfun() to obtain the estimate. See Linear combinations of functions of POVM outcomes for more
details.

Parameters

• other (MPPovmList) – Another MP-POVM list

1.2. API reference 35

mpnum Documentation, Release git

• coeff – A sequence of shape self.mpps[i].nsoutdims coefficients which specify the func-
tion to estimate

• samples – A sequence of samples for other

Returns (est, var): Estimated value and estimated variance of the estimated value. Return
(np.nan, np.nan) if other is not sufficient to estimate the function.

est_pmf(samples, normalized=True, eps=1e-10)
Estimate PMF from samples

Returns an iterator over results from MPPovm.est_pmf() (see there).

est_pmf_from(other, samples, eps=1e-10)
Estimate PMF from samples of another MPPovmList

Parameters

• other (MPPovmList) – A different MPPovmList

• samples – Samples from other

Returns Iterator over (p_est, n_samples_used) from MPPovm.est_pmf_from_mpps().

lfun(coeff, funs, state, mode=’auto’, eps=1e-10)
Evaluate a linear combination of functions of POVM outcomes

coeff[i] and funs[i] are passed to MPPovm.lfun() on self.mpps[i]. funs = None is treated as [None] *
len(self.mpps). state and mode are passed to MPPovm.pmf().

Returns (value, var): Expectation value and variance of the expectation value

lfun_from(other, coeff, state, mode=’auto’, other_weights=None, eps=1e-10)
Evaluate a linear combination of POVM probabilities

This function computes the same expectation value as MPPovmList.lfun() if supplied with funs =
None, but it computes the variance for a different estimation procedure: It uses weighted averages of
POVM probabilities from other to obtain the necessary POVM probabilities for self (the same is done in
MPPovmList.est_lfun_from()).

The parameter coeff is explained in MPPovmList.est_lfun_from(). state and mode are passed to
MPPovm.pmf().

You can supply the array other_weights to determine the weighted average used when a probability in a
POVM in self can be estimated from probabilities in multiple different POVMs in other.

Returns (value, var): Expectation value and variance of the expectation value. Return (np.nan,
np.nan) if other is not sufficient to estimate the function.

pack_samples(samples)
Pack samples into one integer per sample

Returns Iterator over output from MPPovm.pack_samples()

pmf(state, mode=’auto’)
Compute the probability mass functions of all MP-POVMs

Parameters

• state – A quantum state as MPA

• mode – Passed to MPPovm.expectations()

Returns Iterator over probabilities as MPArrays

36 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

pmf_as_array(state, mode=’auto’, eps=1e-10)
Compute the PMF of all MP-POVMs as full arrays

Parameters: See MPPovmList.pmf(). Sanity checks: See MPPovm.pmf_as_array().

Returns Iterator over probabilities as ndarrays

pmfs_as_array(states, mode, asarray=False, eps=1e-10)

Todo: Add docstring

repeat(nr_sites)
Construct longer MP-POVMs by repeating each MP-POVM

This function calls MPPovm.repeat(nr_sites) for each MP-POVM in the list.

For example, pauli_mpps() for local_dim > 3 (i.e. without Z) and two sites returns POVMs for the
four tensor product observables XX, XY, YX and YY:

>>> import mpnum as mp
>>> import mpnum.povm as mpp
>>> block_sites = 2
>>> ldim = 3
>>> x, y = (mpp.MPPovm.from_local_povm(lp(ldim), 1) for lp in
... (mpp.x_povm, mpp.y_povm))
>>> pauli = mpp.pauli_mpps(block_sites, ldim)
>>> expect = (
... mp.chain((x, x)),
... mp.chain((x, y)),
... mp.chain((y, x)),
... mp.chain((y, y)),
...)
>>> [abs(mp.norm(a - b)) <= 1e-10 for a, b in zip(pauli.mpps, expect)]
[True, True, True, True]

Calling repeat(5) then returns the following MPPovmList:

>>> expect = (
... mp.chain((x, x, x, x, x)),
... mp.chain((x, y, x, y, x)),
... mp.chain((y, x, y, x, y)),
... mp.chain((y, y, y, y, y)),
...)
>>> [abs(mp.norm(a - b)) <= 1e-10
... for a, b in zip(pauli.repeat(5).mpps, expect)]
[True, True, True, True]

sample(rng, state, n_samples, method, n_group=1, mode=’auto’, pack=False, eps=1e-10)
Random sample from all MP-POVMs on a quantum state

Parameters: See MPPovm.sample().

Return value: Iterable of return values from MPPovm.sample().

unpack_samples(samples)
Unpack samples into several integers per sample

Returns Iterator over output from MPPovm.unpack_samples()

1.2. API reference 37

mpnum Documentation, Release git

mpnum.povm.mppovm.pauli_mpp(nr_sites, local_dim)
Pauli POVM tensor product as MP-POVM

The resulting MP-POVM will contain all tensor products of the elements of the local Pauli POVM from mpp.
pauli_povm().

Parameters

• nr_sites (int) – Number of sites of the returned MP-POVM

• local_dim (int) – Local dimension

Return type MPPovm

For example, for two qubits the (1, 3) measurement outcome is minus X on the first and minus Y on the second
qubit:

>>> nr_sites = 2
>>> local_dim = 2
>>> pauli = pauli_mpp(nr_sites, local_dim)
>>> xy = np.kron([1, -1], [1, -1j]) / 2
>>> xyproj = np.outer(xy, xy.conj())
>>> proj = pauli.get([1, 3], astype=mp.MPArray) \
... .to_array_global().reshape((4, 4))
>>> abs(proj - xyproj / 3**nr_sites).max() <= 1e-10
True

The prefactor 1 / 3**nr_sites arises because X, Y and Z are in a single POVM.

mpnum.povm.mppovm.pauli_mpps(nr_sites, local_dim)
Pauli POVM tensor product as MP-POVM list

The returned MPPovmList contains all tensor products of the single-site X, Y (and Z if local_dim == 2)
POVMs:

>>> import mpnum as mp
>>> import mpnum.povm as mpp
>>> block_sites = 2
>>> ldim = 3
>>> x, y = (mpp.MPPovm.from_local_povm(lp(ldim), 1) for lp in
... (mpp.x_povm, mpp.y_povm))
>>> pauli = mpp.pauli_mpps(block_sites, ldim)
>>> expect = (
... mp.chain((x, x)),
... mp.chain((x, y)),
... mp.chain((y, x)),
... mp.chain((y, y)),
...)
>>> [abs(mp.norm(a - b)) <= 1e-10 for a, b in zip(pauli.mpps, expect)]
[True, True, True, True]

Parameters

• nr_sites (int) – Number of sites of the returned MP-POVMs

• local_dim (int) – Local dimension

Return type MPPovmList

38 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

povm.localpovm

An informationally complete d-level POVM.

The POVM simplifies to measuring Paulis matrices in the case of qubits.

class mpnum.povm.localpovm.POVM(elements, info_complete=False, pinv=<function pinv>)
Bases: object

Represent a Positive Operator-Valued Measure (POVM).

classmethod from_vectors(vecs, info_complete=False)
Generates a POVM consisting of rank 1 projectors based on the corresponding vectors.

Parameters

• vecs – Iterable of np.ndarray with ndim=1 representing the vectors for the POVM

• info_complete – Is the POVM informationally complete (default False)

Returns

informationally_complete

linear_inversion_map
Map that reconstructs a density matrix with linear inversion.

Linear inversion is performed by taking the Moore–Penrose pseudoinverse of self.probability_map.

probability_map
Map that takes a raveled density matrix to the POVM probabilities

The following two return the same:

probab = np.array([np.trace(np.dot(elem, rho)) for elem in a_povm])
probab = np.dot(a_povm.probability_map, rho.ravel())

mpnum.povm.localpovm.concat(povms, weights, info_complete=False)
Combines the POVMs given in povms according the weights given to a new POVM.

Parameters

• povms – Iterable of POVM

• weights – Iterable of real numbers, should sum up to one

• info_complete – Is the resulting POVM informationally complete

Returns POVM

mpnum.povm.localpovm.pauli_parts(dim)
The POVMs used by pauli_povm() as a list

For dim > 3, x_povm() and y_povm() are returned. For dim = 2, z_povm() is included as well.

Parameters dim – Dimension of the system

Returns Tuple of POVMs

mpnum.povm.localpovm.pauli_povm(dim)
An informationally complete d-level POVM that simplifies to measuring Pauli matrices in the case d=2.

Parameters dim – Dimension of the system

Returns POVM with (generalized) Pauli measurments

1.2. API reference 39

mpnum Documentation, Release git

mpnum.povm.localpovm.x_povm(dim)
The X POVM simplifies to measuring Pauli X eigenvectors for dim=2.

Parameters dim – Dimension of the system

Returns POVM with generalized X measurments

mpnum.povm.localpovm.y_povm(dim)
The Y POVM simplifies to measuring Pauli Y eigenvectors for dim=2.

Parameters dim – Dimension of the system

Returns POVM with generalized Y measurments

mpnum.povm.localpovm.z_povm(dim)
The Z POVM simplifies to measuring Pauli Z eigenvectors for dim=2.

Parameters dim – Dimension of the system

Returns POVM with generalized Z measurments

1.2.8 special

Optimized functions

Module contains some specialiced versions of some functions from mparray. They are tuned for speed with special
applications in mind

mpnum.special.inner_prod_mps(mpa1, mpa2)
Same as mparray.inner(), but assumes that mpa1 is a product MPS

Parameters

• mpa1 – MPArray with one leg per site and rank 1

• mpa2 – MPArray with same shape as mpa1 but arbitrary rank

Returns <mpa1|mpa2>

mpnum.special.sumup(mpas, rank, weights=None, svdfunc=<function truncated_svd>)
Same as mparray.sumup() with a consequent compression, but with in-place svd compression. Also, we
use a sparse-matrix format for the intermediate local tensors of the sum. Therefore, the memory footprint scales
only linearly in the number of summands (instead of quadratically).

Right now, only the sum of product tensors is supported.

Parameters

• mpas – Iterator over MPArrays

• rank – Rank of the final result.

• weights – Iterator of same length as mpas containing weights for computing weighted
sum (default: None)

• svdfunc – Function implementing the truncated svd, for required signature see
truncated_svd().

Returns Sum of mpas with max. rank rank

Possible values for svdfunc include:

• truncated_svd(): Almost no speedup compared to the standard sumup and compression, since it
computes the full SVD

40 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

• scipy.sparse.linalg.svds(): Only computes the necessary singular values/vectors, but slow if
rank is not small enough

• mpnum.utils.extmath.randomized_svd(): Randomized truncated SVD, fast and efficient, but
only approximation.

1.2.9 utils

utils.array_transforms

Helper functions for transforming arrays

mpnum.utils.array_transforms.global_to_local(array, sites, left_skip=0, right_skip=0)
Converts a general sites-local array with fixed number p of physical legs per site from the global form

A[i_1,. . . , i_N, j_1,. . . , j_N, . . .]

(i.e. grouped by physical legs) to the local form

A[i_1, j_1, . . . , i_2, j_2, . . .]

(i.e. grouped by site).

Parameters

• array (np.ndarray) – Array with ndim, such that ndim % sites = 0

• sites (int) – Number of distinct sites

• left_skip (int) – Ignore that many axes on the left

• right_skip (int) – Ignore that many axes on the right

Returns Array with same ndim as array, but reshaped

>>> global_to_local(np.zeros((1, 2, 3, 4, 5, 6)), 3).shape
(1, 4, 2, 5, 3, 6)
>>> global_to_local(np.zeros((1, 2, 3, 4, 5, 6)), 2).shape
(1, 3, 5, 2, 4, 6)

mpnum.utils.array_transforms.local_to_global(array, sites, left_skip=0, right_skip=0)
Inverse of local_to_global

Parameters

• array (np.ndarray) – Array with ndim, such that ndim % sites = 0

• sites (int) – Number of distinct sites

• left_skip (int) – Ignore that many axes on the left

• right_skip (int) – Ignore that many axes on the right

Returns Array with same ndim as array, but reshaped

>>> ltg, gtl = local_to_global, global_to_local
>>> ltg(gtl(np.zeros((1, 2, 3, 4, 5, 6)), 3), 3).shape
(1, 2, 3, 4, 5, 6)
>>> ltg(gtl(np.zeros((1, 2, 3, 4, 5, 6)), 2), 2).shape
(1, 2, 3, 4, 5, 6)

Transform all or only the inner axes:

1.2. API reference 41

mpnum Documentation, Release git

>>> ltg = local_to_global
>>> ltg(np.zeros((1, 2, 3, 4, 5, 6)), 3).shape
(1, 3, 5, 2, 4, 6)
>>> ltg(np.zeros((1, 2, 3, 4, 5, 6)), 2, left_skip=1, right_skip=1).shape
(1, 2, 4, 3, 5, 6)

utils.extmath

Additional math functions for dealing with dense arrays

mpnum.utils.extmath.block_diag(summands, axes=(0, 1))
Block-diagonal sum for n-dimensional arrays.

Perform something like a block diagonal sum (if len(axes) == 2) along the specified axes. All other axes must
have identical sizes.

Parameters axes – Along these axes, perform a block-diagonal sum. Can be negative.

>>> a = np.arange(8).reshape((2, 2, 2))
>>> b = np.arange(8, 16).reshape((2, 2, 2))
>>> a
array([[[0, 1],

[2, 3]],

[[4, 5],
[6, 7]]])

>>> b
array([[[8, 9],

[10, 11]],

[[12, 13],
[14, 15]]])

>>> block_diag((a, b), axes=(1, -1))
array([[[0, 1, 0, 0],

[2, 3, 0, 0],
[0, 0, 8, 9],
[0, 0, 10, 11]],

[[4, 5, 0, 0],
[6, 7, 0, 0],
[0, 0, 12, 13],
[0, 0, 14, 15]]])

mpnum.utils.extmath.matdot(A, B, axes=((-1,), (0,)))
np.tensordot with sane defaults for matrix multiplication

mpnum.utils.extmath.mkron(*args)
np.kron() with an arbitrary number of n >= 1 arguments

mpnum.utils.extmath.partial_trace(array, traceout)
Return the partial trace of an array over the sites given in traceout.

Parameters

• array (np.ndarray) – Array in global form (see global_to_local() above) with
exactly 2 legs per site

• traceout – List of sites to trace out, must be in _ascending_ order

42 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

Returns Partial trace over input array

mpnum.utils.extmath.truncated_svd(A, k)
Compute the truncated SVD of the matrix A i.e. the k largest singular values as well as the corresponding
singular vectors. It might return less singular values/vectors, if one dimension of A is smaller than k.

In the background it performs a full SVD. Therefore, it might be inefficient when k is much smaller than the
dimensions of A.

Parameters

• A – A real or complex matrix

• k – Number of singular values/vectors to compute

Returns u, s, v, where u: left-singular vectors s: singular values in descending order v: right-singular
vectors

mpnum.utils.extmath.randomized_svd(M, n_components, n_oversamples=10,
n_iter=’auto’, piter_normalizer=’auto’,
transpose=’auto’, randstate=<module
’numpy.random’ from ’/usr/lib/python3/dist-
packages/numpy/random/__init__.py’>)

Computes a truncated randomized SVD. Uses the same convention as scipy.sparse.linalg.svds().
However, we guarantee to return the singular values in descending order.

Parameters

• M – The input data matrix, can be any type that can be converted into a scipy.linalg.
LinarOperator, e.g. numpy.ndarray, or a sparse matrix.

• n_components (int) – Number of singular values and vectors to extract.

• n_oversamples (int) – Additional number of random vectors to sample the range of
M so as to ensure proper conditioning. The total number of random vectors used to find
the range of M is n_components + n_oversamples. Smaller number can improve
speed but can negatively impact the quality of approximation of singular vectors and singular
values. (default 10)

• n_iter – Number of power iterations. It can be used to deal with very noisy prob-
lems. When 'auto', it is set to 4, unless n_components is small (< .1 * min(X.
shape)). Then, n_iter is set to 7. This improves precision with few components. (de-
fault 'auto')

• piter_normalizer (str) – 'auto' (default), 'QR', 'LU', 'none'. Whether the
power iterations are normalized with step-by-step QR factorization (the slowest but most
accurate), 'none' (the fastest but numerically unstable when n_iter is large, e.g. typically
5 or larger), or 'LU' factorization (numerically stable but can lose slightly in accuracy). The
‘auto’ mode applies no normalization if n_iter <= 2 and switches to LU otherwise.

• transpose – True, False or 'auto' Whether the algorithm should be applied to
M.T instead of M. The result should approximately be the same. The 'auto' mode will
trigger the transposition if M.shape[1] > M.shape[0] since then the computational
overhead in the randomized SVD is generally smaller. (default 'auto').

• randstate – An instance of numpy.random.RandomState (default is np.
random))

1.2. API reference 43

mpnum Documentation, Release git

Notes

This algorithm finds a (usually very good) approximate truncated singular value decomposition using random-
ization to speed up the computations. It is particularly fast on large matrices on which you wish to extract only
a small number of components. In order to obtain further speed up, n_iter can be set <=2 (at the cost of loss
of precision).

References

• Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompo-
sitions Halko, et al., 2009 http://arxiv.org/abs/arXiv:0909.4061

• A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and
Mark Tygert

• An implementation of a randomized algorithm for principal component analysis A. Szlam et al. 2014

utils.physics

Code related to physical models

Contents:

• Hamiltonian and analytic ground state energy of the cyclic XY model

References:

mpnum.utils.physics.cXY_E0(nr_sites, gamma)
Ground state energy of the cyclic XY model

Parameters

• nr_sites – Number of spin one-half sites

• gamma – Asymmetry parameter

Returns Exact energy of the ground state

This function is implemented for nr_sites which is an odd multiple of two. In this case, the ground state
energy of the XY model is given by (Eqs. (A-12), (2.20) of [LSM61])

𝐸0 = −1

2

𝑁−1∑︁
𝑙=0

Λ𝑘(𝑙)

with (Eqs. (2.18b), (2.18c))

Λ2
𝑘 = 1 − (1 − 𝛾2)[sin(𝑘)]2, 𝑘(𝑙) =

2𝜋

𝑁

(︂
𝑙 − 𝑁

2

)︂
and Λ𝑘 ≥ 0.

mpnum.utils.physics.cXY_local_terms(nr_sites, gamma)
Local terms of the cyclic XY model (MPOs)

Parameters

• nr_sites – Number of spin one-half sites

• gamma – Asymmetry parameter

Returns List terms of length nr_sites (MPOs)

44 Chapter 1. A matrix product representation library for Python

http://arxiv.org/abs/arXiv:0909.4061

mpnum Documentation, Release git

The term terms[i] acts on spins (i, i + 1) and spin nr_sites is the same as the first spin.

The Hamiltonian of the cyclic XY model is given by [LSM61, Eq. 2.1]:

𝐻𝛾 =

𝑁∑︁
𝑖=1

(1 + 𝛾)𝑆𝑥
𝑖 𝑆

𝑥
𝑖+1 + (1 − 𝛾)𝑆𝑦

𝑖 𝑆
𝑦
𝑖+1

with 𝑆𝑗
𝑁+1 = 𝑆𝑗

1 . The function cXY_E0() returns the exact ground state energy of this Hamiltonian.

mpnum.utils.physics.mpo_cH(terms)
Construct an MPO cyclic nearest-neighbour Hamiltonian

Parameters terms – List of nearst-neighbour terms (MPOs, see return value of
cXY_local_terms())

Returns The Hamiltonian as MPO

Note: It may not be advisable to call mp.MPArray.canonicalize() on a Hamiltonian, e.g.:

>>> mpoH = mpo_cH(cXY_local_terms(nr_sites=100, gamma=0))
>>> abs1 = max(abs(lt).max() for lt in mpoH.lt)
>>> mpoH.canonicalize()
>>> abs2 = np.round(max(abs(lt).max() for lt in mpoH.lt), -3)
>>> print('{:.3f} {:.2e}'.format(abs1, abs2))
1.000 2.79e+15

The Hamiltonian generally has a large Frobenius norm because local terms are embedded with identity matrices.
This causes large tensor entries of canonicalization which will eventually overflow the numerical maximum (the
overflow happens somewhere between 2000 and 3000 sites in this example). One could embed local terms
with Frobenius-normalized identity matrices instead, but this would make the eigenvalues of H exponentially
(in nr_sites) small. This would eventually cause numerical underflows.

mpnum.utils.physics.sparse_cH(terms, ldim=2)
Construct a sparse cyclic nearest-neighbour Hamiltonian

Parameters

• terms – List of nearst-neighbour terms (square array or MPO, see return value of
cXY_local_terms())

• ldim – Local dimension

Returns The Hamiltonian as sparse matrix

1.2.10 Todo list (autogenerated)

Todo: single site MPAs – what is left?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring
of mpnum.mparray, line 3.)

Todo: Local tensor ownership – see MPArray class comment

1.2. API reference 45

mpnum Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring
of mpnum.mparray, line 4.)

Todo: Possible optimization:

• replace integer-for loops with iterator (not obviously possible everwhere)

• replace internal structure as list of arrays with lazy generator of arrays (might not be possible, since we often
iterate both ways!)

• more in place operations for addition, subtraction, multiplication

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring
of mpnum.mparray, line 5.)

Todo: Replace all occurences of self._ltens with self[. . .] or similar & benchmark. This will allow easier transition
to lazy evaluation of local tensors

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring
of mpnum.mparray, line 12.)

Todo: As it is now, e.g. __imul__() modifies items from self._ltens. This requires e.g. chain() to take
copies of the local tensors. The data model seems to be that an MPArray instance owns its local tensors and everyone
else, including each new MPArray instance, must take copies. Is this correct?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring
of mpnum.mparray.MPArray, line 18.)

Todo: More appropriate naming for this functions?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring
of mpnum.mparray.MPArray.leg2vleg, line 6.)

Todo: Why is this here? What’s wrong with the purne function?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring
of mpnum.mparray.MPArray.reshape, line 10.)

Todo: More appropriate naming for this functions?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring
of mpnum.mparray.MPArray.vleg2leg, line 11.)

Todo: Make this canonicalization aware

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring
of mpnum.mparray.chain, line 10.)

46 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

Todo: Raise warning when casting complex to real dtype

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring
of mpnum.mparray.chain, line 11.)

Todo: This table needs cell borders in the HTML output (-> CSS) and the tabularcolumns command doesn’t work.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring
of mpnum.mparray.regular_slices, line 24.)

Todo: Are derived classes MPO/MPS/PMPS of any help?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mpsmpo.py:docstring
of mpnum.mpsmpo, line 99.)

Todo: I am not sure the current definition of PMPS is the most elegant for our purposes. . .

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mpsmpo.py:docstring
of mpnum.mpsmpo, line 101.)

Todo: Add docstring

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mpsmpo.py:docstring
of mpnum.mpsmpo.reductions, line 1.)

Todo: Add information on how the runtime of eig() and eig_sum() scale with the the different ranks. For the
time being, refer to the benchmark test.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/linalg.py:docstring
of mpnum.linalg.eig_sum, line 13.)

Todo: Explain the details of the variance estimation, in particular the difference between the variances returned from
MPPovmList.lfun() and MPPovmList.lfun_from(). Check the mean square error.

Add a good references explaining all facts mentioned above and for further reading.

Document the runtime and memory cost of the functions.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/povm/mppovm.py:docstring
of mpnum.povm.mppovm, line 116.)

Todo: This class should provide a function which returns expectation values as full array. (Even though computing
expectation values using the POVM struture brings advantages, we usually need the result as full array.) This function
should also replace small negative probabilities by zero and canonicalize the sum of all probabilities to unity (if the
deviation is non-zero but small). The same checks should also be implemented in localpovm.POVM.

1.2. API reference 47

mpnum Documentation, Release git

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/povm/mppovm.py:docstring
of mpnum.povm.mppovm.MPPovm, line 19.)

Todo: Right now we use this class for multi-site POVMs with elements obtained from every possible combination of
the elements of single-site POVMs: The POVM index is split across all sites. Explore whether and how this concept
can also be useful in other cases.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/povm/mppovm.py:docstring
of mpnum.povm.mppovm.MPPovm, line 28.)

Todo: Add docstring

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/povm/mppovm.py:docstring
of mpnum.povm.mppovm.MPPovm.block_pmfs_as_array, line 1.)

Todo: Add docstring

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/povm/mppovm.py:docstring
of mpnum.povm.mppovm.MPPovm.pmfs_as_array, line 1.)

Todo: Add docstring

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/povm/mppovm.py:docstring
of mpnum.povm.mppovm.MPPovmList.block_pmfs_as_array, line 1.)

Todo: Add docstring

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/povm/mppovm.py:docstring
of mpnum.povm.mppovm.MPPovmList.pmfs_as_array, line 1.)

Todo: Reference to Schollwoeck not working anymore.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/docs/mpnum.rst,
line 118.)

Todo: Reference to Schollwoeck not working anymore.

Note: make livehtml (based on sphinx-autobuild) does not rebuild this list.

1.3 Introductory Notebook to mpnum

mpnum implements matrix product arrays (MPA), which are efficient parameterizations of certain multi-partite arrays.
Special cases of the MPA structure, which are omnipresent in many-body quantum physics, are matrix product states

48 Chapter 1. A matrix product representation library for Python

https://github.com/GaretJax/sphinx-autobuild

mpnum Documentation, Release git

(MPS) and matrix product operators (MPO) with one and two array indices per site, respectively. In the applied math
community, matrix product states are also known as tensor trains (TT).

The main class implementing an MPA with arbitrary number of array indices (or “physical legs”) is mpnum.
MPArray.

In [1]: import numpy as np
import numpy.linalg as la

import mpnum as mp

1.3.1 MPA and MPS basics

A convenient example to deal with is a random MPA. First, we create a fixed seed, then a random MPA:

In [2]: rng = np.random.RandomState(seed=42)
mpa = mp.random_mpa(sites=4, ldim=2, rank=3, randstate=rng, normalized=True)

The MPA is an instance of the MPArray class:

In [3]: mpa

Out[3]: <mpnum.mparray.MPArray at 0x7f65672eaa90>

Number of sites:

In [4]: len(mpa)

Out[4]: 4

Number of physical legs at each site (=number of array indices at each site):

In [5]: mpa.ndims

Out[5]: (1, 1, 1, 1)

Because the MPA has one physical leg per site, we have created a matrix product state (i.e. a tensor train). In the
graphical notation, this MPS looks like this

Note that mpnum internally stores the local tensors of the matrix product representation on the right hand side. We see
below how to obtain the “dense” tensor from an MPArray. Dimension of each physical leg:

In [6]: mpa.shape

Out[6]: ((2,), (2,), (2,), (2,))

Note that the number and dimension of the physical legs at each site can differ (altough this is rarely used in practice).

Representation ranks (aka compression ranks) between each pair of sites:

In [7]: mpa.ranks

Out[7]: (2, 3, 2)

In physics, the representation ranks are usually called the bond dimensions of the representation.

Dummy bonds before and after the chain are omitted in mpa.ranks. (Currently, mpnum only implements open
boundary conditions.)

1.3. Introductory Notebook to mpnum 49

http://mpnum.readthedocs.io/en/latest/intro.html#graphical-notation

mpnum Documentation, Release git

Above, we have specified normalized=True. Therefore, we have created an MPA with ℓ2-norm 1. In case the
MPA does not represent a vector but has more physical legs, it is nonetheless treated as a vector. Hence, for operators
mp.norm implements the Frobenius norm.

In [8]: mp.norm(mpa)

Out[8]: 1.0000000000000002

Convert to a dense array, which should be used with care due because the memory used increases exponentially with
the number of sites:

In [9]: arr = mpa.to_array()
arr.shape

Out[9]: (2, 2, 2, 2)

The resulting full array has one index for each physical leg.

Now convert the full array back to an MPA:

In [10]: mpa2 = mp.MPArray.from_array(arr)
len(mpa2)

Out[10]: 1

We have obtained an MPA with length 1. This is not what we expected. The reason is that by default, all legs are
placed on a single site (also notice the difference between mpa2.shape here and mpa.shape from above):

In [11]: mpa2.shape

Out[11]: ((2, 2, 2, 2),)

In [12]: mpa.shape

Out[12]: ((2,), (2,), (2,), (2,))

We obtain the desired result by specifying the number of legs per site we want:

In [13]: mpa2 = mp.MPArray.from_array(arr, ndims=1)
len(mpa2)

Out[13]: 4

Finally, we can compute the norm distance between the two MPAs. (Again, the Frobenius norm is used.)

In [14]: mp.norm(mpa - mpa2)

Out[14]: 7.2998268912398721e-16

Since this is an often used operation and allows for additional optimization (not implemented currently), it is advisable
to use the specific mp.normdist for this:

In [15]: mp.normdist(mpa, mpa2)

Out[15]: 7.2998268912398721e-16

Sums, differences and scalar multiplication of MPAs is done with the normal operators:

In [16]: mp.norm(3 * mpa)

Out[16]: 3.0000000000000009

In [17]: mp.norm(mpa + 0.5 * mpa)

Out[17]: 1.5000000000000011

In [18]: mp.norm(mpa - 1.5 * mpa)

Out[18]: 0.50000000000000133

Multiplication with a scalar leaves the bond dimension unchanged:

50 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

In [19]: mpa.ranks

Out[19]: (2, 3, 2)

In [20]: (3 * mpa).ranks

Out[20]: (2, 3, 2)

The bond dimensions of a sum (or difference) are given by the sums of the bond dimensions:

In [21]: mpa2 = mp.random_mpa(sites=4, ldim=2, rank=2, randstate=rng)
mpa2.ranks

Out[21]: (2, 2, 2)

In [22]: (mpa + mpa2).ranks

Out[22]: (4, 5, 4)

1.3.2 MPO basics

First, we create a random MPA with two physical legs per site:

In [23]: mpo = mp.random_mpa(sites=4, ldim=(3, 2), rank=3, randstate=rng, normalized=True)

In graphical notation, mpo looks like this

It’s basic properties are:

In [24]: [len(mpo), mpo.ndims, mpo.ranks]

Out[24]: [4, (2, 2, 2, 2), (3, 3, 3)]

Each site has two physical legs, one with dimension 3 and one with dimension 2. This corresponds to a non-square
full array.

In [25]: mpo.shape

Out[25]: ((3, 2), (3, 2), (3, 2), (3, 2))

Now convert the mpo to a full array:

In [26]: mpo_arr = mpo.to_array()
mpo_arr.shape

Out[26]: (3, 2, 3, 2, 3, 2, 3, 2)

We refer to this arangement of axes as local form, since indices which correspond to the same site are neighboring.
This is a natural form for the MPO representation. However, for some operations it is necessary to have row and
column indices grouped together – we refer to this as global form:

In [27]: from mpnum.utils.array_transforms import local_to_global

mpo_arr = mpo.to_array()
mpo_arr = local_to_global(mpo_arr, sites=len(mpo))
mpo_arr.shape

Out[27]: (3, 3, 3, 3, 2, 2, 2, 2)

1.3. Introductory Notebook to mpnum 51

mpnum Documentation, Release git

This gives the expected result. Note that it is crucial to specify the correct number of sites, otherwise we do not get
what we want:

In [28]: mpo_arr = mpo.to_array()
mpo_arr = local_to_global(mpo_arr, sites=2)
mpo_arr.shape

Out[28]: (3, 3, 2, 2, 3, 3, 2, 2)

As an alternative, there is the following shorthand:

In [29]: mpo_arr = mpo.to_array_global()
mpo_arr.shape

Out[29]: (3, 3, 3, 3, 2, 2, 2, 2)

An array in global form can be converted into matrix-product form with the following API:

In [30]: mpo2 = mp.MPArray.from_array_global(mpo_arr, ndims=2)
mp.normdist(mpo, mpo2)

Out[30]: 1.0881840590136613e-15

1.3.3 MPO-MPS product and arbitrary MPA-MPA products

We can now compute the matrix-vector product of mpa from above (which is an MPS) and mpo.

In [31]: mpa.shape

Out[31]: ((2,), (2,), (2,), (2,))

In [32]: mpo.shape

Out[32]: ((3, 2), (3, 2), (3, 2), (3, 2))

In [33]: prod = mp.dot(mpo, mpa, axes=(-1, 0))
prod.shape

Out[33]: ((3,), (3,), (3,), (3,))

The result is a new MPS, with local dimension changed by mpo and looks like this:

The axes argument is optional and defaults to axes=(-1, 0) – i.e. contracting, at each site, the last pyhsical index
of the first factor with the first physical index of the second factor. More specifically, the axes argument specifies
which physical legs should be contracted: axes[0] specifies the physical in the first argument, and axes[1]
specifies the physical leg in the second argument. This means that the same product can be achieved with

In [34]: prod2 = mp.dot(mpa, mpo, axes=(0, 1))
mp.normdist(prod, prod2)

Out[34]: 1.7794893594008944e-16

Note that in any case, the ranks of the output of mp.dot are the products of the original ranks:

52 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

In [35]: mpo.ranks, mpa.ranks, prod.ranks

Out[35]: ((3, 3, 3), (2, 3, 2), (6, 9, 6))

Now we compute the same product using the full arrays arr and mpo_arr:

In [36]: arr_vec = arr.ravel()
mpo_arr = mpo.to_array_global()
mpo_arr_matrix = mpo_arr.reshape((81, 16))
prod3_vec = np.dot(mpo_arr_matrix, arr_vec)
prod3_vec.shape

Out[36]: (81,)

As you can see, we need to reshape the result prod3_vec before we can convert it back to an MPA:

In [37]: prod3_arr = prod3_vec.reshape((3, 3, 3, 3))
prod3 = mp.MPArray.from_array(prod3_arr, ndims=1)
prod3.shape

Out[37]: ((3,), (3,), (3,), (3,))

Now we can compare the two results:

In [38]: mp.normdist(prod, prod3)

Out[38]: 2.0433926816958574e-16

We can also compare by converting prod to a full array:

In [39]: prod_arr = prod.to_array()
la.norm((prod3_arr - prod_arr).reshape(81))

Out[39]: 1.0434960119970279e-16

1.3.4 Converting full operators to MPOs

While MPO algorithms avoid using full operators in general, we will need to convert a term acting on only two sites
to an MPO in order to continue with MPO operations; i.e. we will need to convert a full array to an MPO.

First, we define a full operator:

In [40]: CZ = np.array([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., -1.]])

This operator is the so-called controlled Z gate: Apply Z on the second qubit if the first qubit is in state e2.

To convert it to an MPO, we have to reshape:

In [41]: CZ_arr = CZ.reshape((2, 2, 2, 2))

Now we can create an MPO, being careful to specify the correct number of legs per site:

In [42]: CZ_mpo = mp.MPArray.from_array_global(CZ_arr, ndims=2)

To test it, we apply the operator to the state which has both qubits in state e2:

In [43]: vec = np.kron([0, 1], [0, 1])
vec

Out[43]: array([0, 0, 0, 1])

Reshape and convert to an MPS:

In [44]: vec_arr = vec.reshape([2, 2])
mps = mp.MPArray.from_array(vec_arr, ndims=1)

1.3. Introductory Notebook to mpnum 53

mpnum Documentation, Release git

Now we can compute the matrix-vector product:

In [45]: out = mp.dot(CZ_mpo, mps)
out.to_array().ravel()

Out[45]: array([0., 0., 0., -1.])

The output is as expected: We have acquired a minus sign.

We have to be careful to use from_array_global and not from_array for CZ_mpo, because the CZ_arr is
in global form. Here, all physical legs have the same dimension, so we can use from_array without error:

In [46]: CZ_mpo2 = mp.MPArray.from_array(CZ_arr, ndims=2)

However, the result is not what we want:

In [47]: out2 = mp.dot(CZ_mpo2, mps)
out2.to_array().ravel()

Out[47]: array([1., 0., 0., -1.])

The reason is easy to see: We have applied the following matrix to our state:

In [48]: CZ_mpo2.to_array_global().reshape(4, 4)

Out[48]: array([[1., 0., 0., 1.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[1., 0., 0., -1.]])

Keep in mind that we have to use to_array_global before the reshape. Using to_array would not provide us
the matrix which we have applied to the state with mp.dot. Instead, it will exactly return the input:

In [49]: CZ_mpo2.to_array().reshape(4, 4)

Out[49]: array([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., -1.]])

Again, from_array_global is just the shorthand for the following:

In [50]: from mpnum.utils.array_transforms import global_to_local

CZ_mpo3 = mp.MPArray.from_array(global_to_local(CZ_arr, sites=2), ndims=2)

mp.normdist(CZ_mpo, CZ_mpo3)

Out[50]: 1.5700924586837752e-16

As you can see, in the explicit version you must submit both the correct number of sites and the correct number of
physical legs per site. Therefore, the function MPArray.from_array_global simplifies the conversion.

1.3.5 Creating MPAs from Kronecker products

It is a frequent task to create an MPS which represents the product state of |0⟩ on each qubit. If the chain is very long,
we cannot create the full array with np.kron and use MPArray.from_array afterwards because the array would
be too large.

In the following, we describe how to efficiently construct an MPA representation of a Kronecker product of vectors.
The same methods can be used to efficiently construct MPA representations of Kronecker products of operators or
tensors with three or more indices.

First, we need the state on a single site:

54 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

In [51]: e1 = np.array([1, 0])
e1

Out[51]: array([1, 0])

Then we can use from_kron to directly create an MPS representation of the Kronecker product:

In [52]: mps = mp.MPArray.from_kron([e1, e1, e1])
mps.to_array().ravel()

Out[52]: array([1, 0, 0, 0, 0, 0, 0, 0])

This works well for large numbers of sites because the needed memory scales linearly with the number of sites:

In [53]: mps = mp.MPArray.from_kron([e1] * 2000)
len(mps)

Out[53]: 2000

An even more pythonic solution is the use of iterators in this example:

In [54]: from itertools import repeat

mps = mp.MPArray.from_kron(repeat(e1, 2000))
len(mps)

Out[54]: 2000

Do not call .to_array() on this state!

The bond dimension of the state is 1, because it is a product state:

In [55]: np.array(mps.ranks) # Convert to an array for nicer display

Out[55]: array([1, 1, 1, ..., 1, 1, 1])

We can also create a single-site MPS:

In [56]: mps1 = mp.MPArray.from_array(e1, ndims=1)
len(mps1)

Out[56]: 1

After that, we can use mp.chain to create Kronecker products of the MPS directly:

In [57]: mps = mp.chain([mps1, mps1, mps1])
len(mps)

Out[57]: 3

It returns the same result as before:

In [58]: mps.to_array().ravel()

Out[58]: array([1, 0, 0, 0, 0, 0, 0, 0])

We can also use mp.chain on the three-site MPS:

In [59]: mps = mp.chain([mps] * 100)
len(mps)

Out[59]: 300

Note that mp.chain interprets the factors in the tensor product as distinct sites. Hence, the factors do not need to
be of the same length or even have the same number of indices. In contrast, there is also mp.localouter, which
computes the tensor product of MPArrays with the same number of sites:

In [60]: mps = mp.chain([mps1] * 4)
len(mps), mps.shape,

Out[60]: (4, ((2,), (2,), (2,), (2,)))

1.3. Introductory Notebook to mpnum 55

mpnum Documentation, Release git

In [61]: rho = mp.localouter(mps.conj(), mps)
len(rho), rho.shape

Out[61]: (4, ((2, 2), (2, 2), (2, 2), (2, 2)))

1.3.6 Compression

A typical matrix product based numerical algorithm performs many additions or multiplications of MPAs. As men-
tioned above, both operations increase the rank. If we let the bond dimension grow, the amount of memory we need
grows with the number of operations we perform. To avoid this problem, we have to find an MPA with a smaller rank
which is a good approximation to the original MPA.

We start by creating an MPO representation of the identity matrix on 6 sites with local dimension 3:

In [62]: op = mp.eye(sites=6, ldim=3)

In [63]: op.shape

Out[63]: ((3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3))

As it is a tensor product operator, it has rank 1:

In [64]: op.ranks

Out[64]: (1, 1, 1, 1, 1)

However, addition increases the rank:

In [65]: op2 = op + op + op
op2.ranks

Out[65]: (3, 3, 3, 3, 3)

Matrix multiplication multiplies the individual ranks:

In [66]: op3 = mp.dot(op2, op2)
op3.ranks

Out[66]: (9, 9, 9, 9, 9)

(NB: compress or compression below can call canonicalize on the MPA, which in turn could already
reduce the rank to 1 in case the rank can be compressed without error. Keep that in mind.)

Keep in mind that the operator represented by op3 is still the identity operator, i.e. a tensor product operator. This
means that we expect to find a good approximation with low rank easily. Finding such an approximation is called
compression and is achieved as follows:

In [67]: op3 /= mp.norm(op3.copy()) # normalize to make overlap meaningful
copy = op3.copy()
overlap = copy.compress(method='svd', rank=1)
copy.ranks

Out[67]: (1, 1, 1, 1, 1)

Calling compress on an MPA replaces the MPA in place with a version with smaller bond dimension. Overlap gives
the absolute value of the (Hilbert-Schmidt) inner product between the original state and the output:

In [68]: overlap

Out[68]: 0.99999999999999911

Instead of in-place compression, we can also obtain a compressed copy:

In [69]: compr, overlap = op3.compression(method='svd', rank=2)
overlap, compr.ranks, op3.ranks

Out[69]: (0.99999999999999911, (2, 2, 2, 2, 2), (9, 9, 9, 9, 9))

56 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

SVD compression can also be told to meet a certain truncation error (see the documentation of mp.MPArray.
compress for details).

In [70]: compr, overlap = op3.compression(method='svd', relerr=1e-6)
overlap, compr.ranks, op3.ranks

Out[70]: (0.99999999999999911, (1, 1, 1, 1, 1), (9, 9, 9, 9, 9))

We can also use variational compression instead of SVD compression:

In [71]: compr, overlap = op3.compression(method='var', rank=2, num_sweeps=10, var_sites=2)
Convert overlap from numpy array with shape () to float for nicer display:
overlap = overlap.flat[0]
complex(overlap), compr.ranks, op3.ranks

Out[71]: ((1+0j), (2, 2, 2, 2, 2), (9, 9, 9, 9, 9))

As a reminder, it is always advisable to check whether the overlap between the input state and the compression is large
enough. In an involved algorithm, it can be useful to store the compression error at each invocation of compression.

1.3.7 MPO sum of local terms

A frequent task is to compute the MPO representation of a local Hamiltonian, i.e. of an operator of the form

𝐻 =

𝑛−1∑︁
𝑖=1

ℎ𝑖,𝑖+1

𝑤ℎ𝑒𝑟𝑒 : 𝑚𝑎𝑡ℎ : ‘ℎ𝑖,𝑖+1‘𝑎𝑐𝑡𝑠𝑜𝑛𝑙𝑦𝑜𝑛𝑠𝑖𝑡𝑒𝑠 : 𝑚𝑎𝑡ℎ : ‘𝑖‘𝑎𝑛𝑑

𝑖+ 1. This means that ℎ𝑖,𝑖+1 = 1𝑖−1 ⊗ ℎ′𝑖,𝑖+1 ⊗1𝑛−𝑤+1 where 1𝑘 is the identity matrix on 𝑘 sites and 𝑤 = 2 is the
width of ℎ′𝑖,𝑖+1.

We show how to obtain an MPO representation of such a Hamiltonian. First of all, we need to define the local terms.
For simplicity, we choose ℎ′𝑖,𝑖+1 = 𝜎𝑍 ⊗ 𝜎𝑍 independently of 𝑖.

In [72]: zeros = np.zeros((2, 2))
zeros

Out[72]: array([[0., 0.],
[0., 0.]])

In [73]: idm = np.eye(2)
idm

Out[73]: array([[1., 0.],
[0., 1.]])

In [74]: # Create a float array instead of an int array to avoid problems later
Z = np.diag([1., -1])
Z

Out[74]: array([[1., 0.],
[0., -1.]])

In [75]: h = np.kron(Z, Z)
h

Out[75]: array([[1., 0., 0., 0.],
[0., -1., 0., -0.],
[0., 0., -1., -0.],
[0., -0., -0., 1.]])

First, we have to convert the local term h to an MPO:

1.3. Introductory Notebook to mpnum 57

mpnum Documentation, Release git

In [76]: h_arr = h.reshape((2, 2, 2, 2))
h_mpo = mp.MPArray.from_array_global(h_arr, ndims=2)
h_mpo.ranks

Out[76]: (4,)

h_mpo has rank 4 even though h is a tensor product. This is far from optimal. We improve things as follows: (We
could also compress h_mpo.)

In [77]: h_mpo = mp.MPArray.from_kron([Z, Z])
h_mpo.ranks

Out[77]: (1,)

The most simple way is to implement the formula from above with MPOs: First we compute the ℎ𝑖,𝑖+1 from the
ℎ′𝑖,𝑖+1:

In [78]: width = 2
sites = 6
local_terms = []

for startpos in range(sites - width + 1):
left = [mp.MPArray.from_kron([idm] * startpos)] if startpos > 0 else []
right = [mp.MPArray.from_kron([idm] * (sites - width - startpos))] \

if sites - width - startpos > 0 else []
h_at_startpos = mp.chain(left + [h_mpo] + right)
local_terms.append(h_at_startpos)

local_terms

Out[78]: [<mpnum.mparray.MPArray at 0x7f6563b08588>,
<mpnum.mparray.MPArray at 0x7f6563b084e0>,
<mpnum.mparray.MPArray at 0x7f6563b086a0>,
<mpnum.mparray.MPArray at 0x7f6563b08710>,
<mpnum.mparray.MPArray at 0x7f6563b08630>]

Next, we compute the sum of all the local terms and check the bond dimension of the result:

In [79]: H = local_terms[0]

for local_term in local_terms[1:]:
H += local_term

H.ranks

Out[79]: (5, 5, 5, 5, 5)

The ranks are explained by the ranks of the local terms:

In [80]: [local_term.ranks for local_term in local_terms]

Out[80]: [(1, 1, 1, 1, 1),
(1, 1, 1, 1, 1),
(1, 1, 1, 1, 1),
(1, 1, 1, 1, 1),
(1, 1, 1, 1, 1)]

We just have to add the ranks at each position.

mpnum provides a function which constructs H from h_mpo, with an output MPO with smaller rank by taking into
account the trivial action on some sites:

In [81]: H2 = mp.local_sum([h_mpo] * (sites - width + 1))
H2.ranks

Out[81]: (2, 3, 3, 3, 2)

58 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

Without additional arguments, mp.local_sum() just adds the local terms with the first term starting on site 0, the
second on site 1 and so on. In addition, the length of the chain is chosen such that the last site of the chain coincides
with the last site of the last local term. Other constructions can be obtained by prodividing additional arguments.

We can check that the two Hamiltonians are equal:

In [82]: mp.normdist(H, H2)

Out[82]: 6.4354640488548389e-15

Of course, this means that we could just compress H:

In [83]: H_comp, overlap = H.compression(method='svd', rank=3)
overlap / mp.norm(H)**2

Out[83]: 0.99999999999999889

In [84]: H_comp.ranks

Out[84]: (3, 3, 3, 3, 3)

We can also check the minimal bond dimension which can be achieved with SVD compression with small error:

In [85]: H_comp, overlap = H.compression(method='svd', relerr=1e-6)
overlap / mp.norm(H)**2

Out[85]: 0.99999999999999933

In [86]: H_comp.ranks

Out[86]: (2, 3, 3, 3, 2)

1.3.8 MPS, MPOs and PMPS

We can represent vectors (e.g. pure quantum states) as MPS, we can represent arbitrary matrices as MPO and we can
represent positive semidefinite matrices as purifying matrix product states (PMPS). For mixed quantum states, we can
thus choose between the MPO and PMPS representations.

As mentioned in the introduction, MPS and MPOs are handled as MPAs with one and two physical legs per site. In
addition, PMPS are handled as MPAs with two physical legs per site, where the first leg is the “system” site and the
second leg is the corresponding “ancilla” site.

From MPS and PMPS representations, we can easily obtain MPO representations. mpnum provides routines for this:

In [87]: mps = mp.random_mpa(sites=5, ldim=2, rank=3, normalized=True)
mps_mpo = mp.mps_to_mpo(mps)
mps_mpo.ranks

Out[87]: (4, 9, 9, 4)

As expected, the rank of mps_mpo is the square of the rank of mps.

Now we create a PMPS with system site dimension 2 and ancilla site dimension 3:

In [88]: pmps = mp.random_mpa(sites=5, ldim=(2, 3), rank=3, normalized=True)
pmps.shape

Out[88]: ((2, 3), (2, 3), (2, 3), (2, 3), (2, 3))

In [89]: pmps_mpo = mp.pmps_to_mpo(pmps)
pmps_mpo.ranks

Out[89]: (9, 9, 9, 9)

Again, the rank is squared, as expected. We can verify that the first physical leg of each site of pmps is indeed the
system site by checking the shape of pmps_mpo:

1.3. Introductory Notebook to mpnum 59

mpnum Documentation, Release git

In [90]: pmps_mpo.shape

Out[90]: ((2, 2), (2, 2), (2, 2), (2, 2), (2, 2))

1.3.9 Local reduced states

For state tomography applications, we frequently need the local reduced states of an MPS, MPO or PMPS. We provide
the following functions for this task:

• mp.reductions_mps_as_pmps(): Input: MPS, output: local reductions as PMPS

• mp.reductions_mps_as_mpo(): Input: MPS, output: local reductions as MPO

• mp.reductions_pmps(): Input: PMPS, output: Local reductions as PMPS

• mp.reductions_mpo(): Input: MPO, output: Local reductions as MPO

The arguments of all functions are similar, e.g.:

In [91]: width = 3
startsites = range(len(pmps) - width + 1)
for startsite, red in zip(startsites, mp.reductions_pmps(pmps, width, startsites)):

print('Reduction starting on site', startsite)
print('bdims:', red.ranks)
red_mpo = mp.pmps_to_mpo(red)
print('trace:', mp.trace(red_mpo))
print()

Reduction starting on site 0
bdims: (3, 3)
trace: 1.0

Reduction starting on site 1
bdims: (3, 3)
trace: 1.0

Reduction starting on site 2
bdims: (3, 3)
trace: 1.0

Because pmps was a normalized state, the trace of the reduced states is close to 1.

You can omit the startsites argument: The default behaviour is the first reductions starting on site 0, the second
on site 1, and so on (which is just what we have requested). The functions for reduced states can also compute different
constructions by providing different arguments not described here.

1.4 Development & Contributing

This section contains information for anyone who wishes to contribute to mpnum. Contributions and pull requests for
mpnum are very welcome.

Contents

• Development & Contributing

– Code style

60 Chapter 1. A matrix product representation library for Python

mpnum Documentation, Release git

– Unit tests

– Test coverage

– Benchmark tests

– Building the documentation

1.4.1 Code style

All contributions should be formated according to the PEP8 standard. Slightly more than 80 characters can sometimes
be tolerated if increased line width increases readability.

1.4.2 Unit tests

After any change to mpnum, it should be verified that the test suite runs without any errors. For any new functionality,
please provide suitable unit tests. Also, if you find a bug, consider adding a test that detects the bug before fixing it.

A short set of tests takes less than 30 seconds and is invoked with one of

python -m pytest
python setup.py test

Note that the second command also installs the dependencies for tests if they are not present. However, since this
command ignores wheel files for the dependencies, it tries to install h5py from source on many systems. This is not
trivial and might take some time since it builds the HDF5 binaries from scratch. A better way is to install binaries for
the test dependencies via running the following command from the mpnum source code root directory

pip install -r requirements.txt

An intermediate set of tests, which takes about 2 minutes to run, is executed automatically for every commit on GitHub
via Travis continuous integration. It can be run locally via

python -m pytest -m "not verylong"
bash tests/travis.sh

A long set of tests takes about 30 minutes and is invoked with

python -m pytest -m 1

Unit tests are implemented using pytest. Every addition to mpnum should be accompanied by corresponding unit tests.
Make sure to use the right pytest-mark for each test. The intermediate and long running tests should be marked with
the ‘long’ and ‘verylong’ pytest mark, respectively.

1.4.3 Test coverage

Code not covered by unit tests can be detected with pytest-cov. A HTML coverage report can be generated using

python -m pytest --cov-report term --cov-report html --cov=mpnum

Afterwards, the HTML coverage report is available in htmlcov/index.html.

1.4. Development & Contributing 61

https://www.python.org/dev/peps/pep-0008/
https://travis-ci.org/dseuss/mpnum
http://pytest.org/
https://pypi.python.org/pypi/pytest-cov

mpnum Documentation, Release git

1.4.4 Benchmark tests

In addition to unit tests, there are benchmark tests which measure the runtime of certain functions. To run all bench-
mark tests, run

python -m pytest -m benchmark

1.4.5 Building the documentation

The HTML documentation uses Sphinx. Building the documentation requires the RTD theme:

conda install sphinx_rtd_theme # or
pip install sphinx_rtd_theme

On Linux/MacOS, the documentation can be built with a simple

make -C docs html

or

cd docs; make html

After the build, the HTML documentation is available at docs/_build/html/index.html.

sphinx-autobuild can be used to rebuild HTML documentation automatically anytime a source file is changed:

pip install sphinx-autobuild
make -C docs livehtml

On Windows, docs/make.bat may be useful. For more information, see the Sphinx tutorial.

1.5 Gallery

This page contains images needed for the example notebook. In the future (when sphinx_rtd_theme v.0.2.5 is available
on PyPi), this page will not be visible anymore globally.

62 Chapter 1. A matrix product representation library for Python

http://www.sphinx-doc.org/
https://github.com/rtfd/sphinx_rtd_theme
https://pypi.python.org/pypi/sphinx-autobuild
http://www.sphinx-doc.org/en/stable/tutorial.html

CHAPTER 2

Indices and tables

• genindex

• modindex

63

mpnum Documentation, Release git

64 Chapter 2. Indices and tables

Bibliography

[Sch11] Schollwöck, U. (2011). The density-matrix renormalization group in the age of matrix product states. Ann.
Phys. 326(1), pp. 96–192. DOI: 10.1016/j.aop.2010.09.012. arXiv:1008.3477.

[KGE14] Kliesch, Gross and Eisert (2014). Matrix-product operators and states: NP-hardness and undecidability.
Phys. Rev. Lett. 113, 160503. DOI: 10.1103/PhysRevLett.113.160503. arXiv:1404.4466.

[LSM61] Lieb, Schultz and Mattis (1961). Two soluble models of an antiferromagnetic chain.

65

http://dx.doi.org/10.1016/j.aop.2010.09.012
http://arxiv.org/abs/1008.3477
DOI:https://doi.org/10.1103/PhysRevLett.113.160503
http://arxiv.org/abs/1404.4466

mpnum Documentation, Release git

66 Bibliography

Python Module Index

m
mpnum, 7
mpnum.factory, 20
mpnum.linalg, 26
mpnum.mparray, 7
mpnum.mpsmpo, 23
mpnum.mpstruct, 19
mpnum.povm, 28
mpnum.povm.localpovm, 39
mpnum.povm.mppovm, 28
mpnum.special, 40
mpnum.utils.array_transforms, 41
mpnum.utils.extmath, 42
mpnum.utils.physics, 44

67

mpnum Documentation, Release git

68 Python Module Index

Index

Symbols
__init__() (mpnum.mparray.MPArray method), 8
__init__() (mpnum.povm.mppovm.MPPovmList

method), 34
__len__() (mpnum.mparray.MPArray method), 8

A
adj() (mpnum.mparray.MPArray method), 8
axis_iter() (mpnum.mparray.MPArray method), 8

B
block() (mpnum.povm.mppovm.MPPovm method), 29
block() (mpnum.povm.mppovm.MPPovmList method),

35
block_diag() (in module mpnum.utils.extmath), 42
block_pmfs_as_array() (mp-

num.povm.mppovm.MPPovm method),
30

block_pmfs_as_array() (mp-
num.povm.mppovm.MPPovmList method),
35

C
canonical_form (mpnum.mparray.MPArray attribute), 8
canonical_form (mpnum.mpstruct.LocalTensors at-

tribute), 19
canonicalize() (mpnum.mparray.MPArray method), 9
chain() (in module mpnum.mparray), 16
compress() (mpnum.mparray.MPArray method), 9
compression() (mpnum.mparray.MPArray method), 10
concat() (in module mpnum.povm.localpovm), 39
conj() (mpnum.mparray.MPArray method), 10
copy() (mpnum.mparray.MPArray method), 10
copy() (mpnum.mpstruct.LocalTensors method), 20
cXY_E0() (in module mpnum.utils.physics), 44
cXY_local_terms() (in module mpnum.utils.physics), 44

D
diag() (in module mpnum.mparray), 18

diagonal_mpa() (in module mpnum.factory), 23
dot() (in module mpnum.mparray), 14
dtype (mpnum.mparray.MPArray attribute), 10
dump() (mpnum.mparray.MPArray method), 10

E
eig() (in module mpnum.linalg), 26
eig_sum() (in module mpnum.linalg), 27
elements (mpnum.povm.mppovm.MPPovm attribute), 30
embed() (mpnum.povm.mppovm.MPPovm method), 30
embed_slice() (in module mpnum.mparray), 18
est_lfun() (mpnum.povm.mppovm.MPPovm method), 30
est_lfun() (mpnum.povm.mppovm.MPPovmList

method), 35
est_lfun_from() (mpnum.povm.mppovm.MPPovmList

method), 35
est_pmf() (mpnum.povm.mppovm.MPPovm method), 30
est_pmf() (mpnum.povm.mppovm.MPPovmList

method), 36
est_pmf_from() (mpnum.povm.mppovm.MPPovm

method), 30
est_pmf_from() (mpnum.povm.mppovm.MPPovmList

method), 36
est_pmf_from_mpps() (mpnum.povm.mppovm.MPPovm

method), 31
expectations() (mpnum.povm.mppovm.MPPovm

method), 31
eye() (in module mpnum.factory), 20
eye() (mpnum.povm.mppovm.MPPovm class method),

31

F
from_array() (mpnum.mparray.MPArray class method),

11
from_array_global() (mpnum.mparray.MPArray class

method), 11
from_kron() (mpnum.mparray.MPArray class method),

11
from_local_povm() (mpnum.povm.mppovm.MPPovm

class method), 31

69

mpnum Documentation, Release git

from_vectors() (mpnum.povm.localpovm.POVM class
method), 39

full_rank() (in module mpnum.mparray), 19

G
get() (mpnum.mparray.MPArray method), 11
global_to_local() (in module mp-

num.utils.array_transforms), 41
group_sites() (mpnum.mparray.MPArray method), 11

H
hdims (mpnum.povm.mppovm.MPPovm attribute), 32

I
informationally_complete (mp-

num.povm.localpovm.POVM attribute),
39

inject() (in module mpnum.mparray), 14
inner() (in module mpnum.mparray), 15
inner_prod_mps() (in module mpnum.special), 40

L
leg2vleg() (mpnum.mparray.MPArray method), 12
lfun() (mpnum.povm.mppovm.MPPovm method), 32
lfun() (mpnum.povm.mppovm.MPPovmList method), 36
lfun_from() (mpnum.povm.mppovm.MPPovmList

method), 36
linear_inversion_map (mpnum.povm.localpovm.POVM

attribute), 39
load() (mpnum.mparray.MPArray class method), 12
local_sum() (in module mpnum.mparray), 15
local_to_global() (in module mp-

num.utils.array_transforms), 41
localouter() (in module mpnum.mparray), 15
LocalTensors (class in mpnum.mpstruct), 19
lt (mpnum.mparray.MPArray attribute), 12

M
match_elems() (mpnum.povm.mppovm.MPPovm

method), 32
matdot() (in module mpnum.utils.extmath), 42
mkron() (in module mpnum.utils.extmath), 42
MPArray (class in mpnum.mparray), 8
mpnum (module), 7
mpnum.factory (module), 20
mpnum.linalg (module), 26
mpnum.mparray (module), 7
mpnum.mpsmpo (module), 23
mpnum.mpstruct (module), 19
mpnum.povm (module), 28
mpnum.povm.localpovm (module), 39
mpnum.povm.mppovm (module), 28
mpnum.special (module), 40

mpnum.utils.array_transforms (module), 41
mpnum.utils.extmath (module), 42
mpnum.utils.physics (module), 44
mpo_cH() (in module mpnum.utils.physics), 45
MPPovm (class in mpnum.povm.mppovm), 29
MPPovmList (class in mpnum.povm.mppovm), 34
mps_to_mpo() (in module mpnum.mpsmpo), 24
mps_to_pmps() (in module mpnum.mpsmpo), 25

N
ndims (mpnum.mparray.MPArray attribute), 12
norm() (in module mpnum.mparray), 16
normdist() (in module mpnum.mparray), 16
nsoutdims (mpnum.povm.mppovm.MPPovm attribute),

32
nsoutpos (mpnum.povm.mppovm.MPPovm attribute), 32

O
outdims (mpnum.povm.mppovm.MPPovm attribute), 32

P
pack_samples() (mpnum.povm.mppovm.MPPovm

method), 32
pack_samples() (mpnum.povm.mppovm.MPPovmList

method), 36
pad_ranks() (mpnum.mparray.MPArray method), 12
partial_trace() (in module mpnum.utils.extmath), 42
partialdot() (in module mpnum.mparray), 16
partialtrace() (in module mpnum.mparray), 17
pauli_mpp() (in module mpnum.povm.mppovm), 37
pauli_mpps() (in module mpnum.povm.mppovm), 38
pauli_parts() (in module mpnum.povm.localpovm), 39
pauli_povm() (in module mpnum.povm.localpovm), 39
pmf() (mpnum.povm.mppovm.MPPovm method), 33
pmf() (mpnum.povm.mppovm.MPPovmList method), 36
pmf_as_array() (mpnum.povm.mppovm.MPPovm

method), 33
pmf_as_array() (mpnum.povm.mppovm.MPPovmList

method), 36
pmfs_as_array() (mpnum.povm.mppovm.MPPovm

method), 33
pmfs_as_array() (mpnum.povm.mppovm.MPPovmList

method), 37
pmps_dm_to_array() (in module mpnum.mpsmpo), 25
pmps_reduction() (in module mpnum.mpsmpo), 25
pmps_to_mpo() (in module mpnum.mpsmpo), 25
pmps_to_mps() (in module mpnum.mpsmpo), 25
POVM (class in mpnum.povm.localpovm), 39
probability_map (mpnum.povm.localpovm.POVM

attribute), 39
probability_map (mpnum.povm.mppovm.MPPovm at-

tribute), 33
prune() (in module mpnum.mparray), 17

70 Index

mpnum Documentation, Release git

R
random_local_ham() (in module mpnum.factory), 20
random_mpa() (in module mpnum.factory), 21
random_mpdo() (in module mpnum.factory), 21
random_mpo() (in module mpnum.factory), 22
random_mps() (in module mpnum.factory), 22
randomized_svd() (in module mpnum.utils.extmath), 43
ranks (mpnum.mparray.MPArray attribute), 12
ravel() (mpnum.mparray.MPArray method), 12
reductions() (in module mpnum.mpsmpo), 26
reductions_mpo() (in module mpnum.mpsmpo), 25
reductions_mps_as_mpo() (in module mpnum.mpsmpo),

25
reductions_mps_as_pmps() (in module mp-

num.mpsmpo), 26
reductions_pmps() (in module mpnum.mpsmpo), 26
regular_slices() (in module mpnum.mparray), 17
repeat() (mpnum.povm.mppovm.MPPovm method), 33
repeat() (mpnum.povm.mppovm.MPPovmList method),

37
reshape() (mpnum.mparray.MPArray method), 12
reverse() (mpnum.mparray.MPArray method), 12

S
sample() (mpnum.povm.mppovm.MPPovm method), 33
sample() (mpnum.povm.mppovm.MPPovmList method),

37
sandwich() (in module mpnum.mparray), 18
shape (mpnum.mparray.MPArray attribute), 12
shape (mpnum.mpstruct.LocalTensors attribute), 20
singularvals() (mpnum.mparray.MPArray method), 12
size (mpnum.mparray.MPArray attribute), 13
sparse_cH() (in module mpnum.utils.physics), 45
split() (mpnum.mparray.MPArray method), 13
split_sites() (mpnum.mparray.MPArray method), 13
sum() (mpnum.mparray.MPArray method), 13
sumup() (in module mpnum.mparray), 19
sumup() (in module mpnum.special), 40

T
T (mpnum.mparray.MPArray attribute), 8
to_array() (mpnum.mparray.MPArray method), 13
to_array_global() (mpnum.mparray.MPArray method),

13
trace() (in module mpnum.mparray), 18
transpose() (mpnum.mparray.MPArray method), 14
truncated_svd() (in module mpnum.utils.extmath), 43

U
unpack_samples() (mpnum.povm.mppovm.MPPovm

method), 34
unpack_samples() (mpnum.povm.mppovm.MPPovmList

method), 37

update() (mpnum.mpstruct.LocalTensors method), 20

V
vleg2leg() (mpnum.mparray.MPArray method), 14

X
x_povm() (in module mpnum.povm.localpovm), 39

Y
y_povm() (in module mpnum.povm.localpovm), 40

Z
z_povm() (in module mpnum.povm.localpovm), 40
zero() (in module mpnum.factory), 23

Index 71

	A matrix product representation library for Python
	Introduction
	API reference
	Introductory Notebook to mpnum
	Development & Contributing
	Gallery

	Indices and tables
	Bibliography
	Python Module Index

