

[image: mpnum]

A matrix product representation library for Python

mpnum is a flexible, user-friendly, and expandable toolbox for the
matrix product state/tensor train tensor format.

Documentation

	Introduction
	Matrix product arrays
	Graphical notation

	Matrix product states (MPS)

	Matrix product operators (MPO)

	Local purification form MPS (PMPS)

	General matrix product arrays

	Next steps

	References

	API reference
	Module overview

	mparray

	mpstruct

	factory

	mpsmpo
	Definitions
	Matrix product state (MPS)

	Matrix product operator (MPO)

	Locally purified matrix product state (PMPS)

	linalg

	povm
	povm.mppovm
	Linear combinations of functions of POVM outcomes

	Class and function reference

	povm.localpovm

	special

	utils
	utils.array_transforms

	utils.extmath

	utils.physics

	Todo list (autogenerated)

	Introductory Notebook to mpnum
	MPA and MPS basics

	MPO basics

	MPO-MPS product and arbitrary MPA-MPA products

	Converting full operators to MPOs

	Creating MPAs from Kronecker products

	Compression

	MPO sum of local terms

	MPS, MPOs and PMPS

	Local reduced states

	Development & Contributing
	Code style

	Unit tests

	Test coverage

	Benchmark tests

	Building the documentation

	Fork mpnum on Github [https://github.com/dseuss/mpnum]

Indices and tables

	Index

	Module Index

Introduction

mpnum is a flexible, user-friendly, and expandable toolbox for the
matrix product state/tensor train tensor format. It is available
under the BSD license at mpnum on Github [https://github.com/dseuss/mpnum]. mpnum provides:

	support for well-known matrix product representations, such as:

	matrix product states (MPS), also known as
tensor trains (TT)

	matrix product operators (MPO)

	local purification matrix product states (PMPS)

	arbitrary matrix product arrays (MPA)

	arithmetic operations: addition, multiplication, contraction etc.

	compression, canonical forms, etc. (see compress(), canonicalize())

	finding extremal eigenvalues and eigenvectors of MPOs (see
eig())

In this introduction, we discuss mpnum’s basic data structure, the
MPArray (MPA). If you are familiar
with matrix product states and want to see mpnum in action, you can
skip to the IPython notebook mpnum_intro.ipynb (view
mpnum_intro.ipynb on Github [https://github.com/dseuss/mpnum/blob/master/examples/mpnum_intro.ipynb]).

Contents

	Introduction

	Matrix product arrays

	Graphical notation

	Matrix product states (MPS)

	Matrix product operators (MPO)

	Local purification form MPS (PMPS)

	General matrix product arrays

	Next steps

	References

Matrix product arrays

The basic data structure of mpnum is the class
mpnum.mparray.MPArray. It represents tensors in
matrix-product form in an opaque manner while providing the user with
a high-level interface similar to numpy’s ndarray. Special cases
of MPAs include matrix-product states (MPS) and operators (MPOs) used
in quantum physics.

Graphical notation

Operations on tensors such as contractions are much easier to write down using
graphical notation [Sch11, Figure 38].
A simple case of of a tensor contraction is the product of two matrices:

\[C = A B^T\]

We represent this tensor contraction with the following figure:

[image: _images/tensors_matrixproduct.png]
Each of the tensors \(A\), \(B\) and \(C\) is represented
by one box. All the tensors have two indices (as they are matrices),
therefore there are two lines emerging from each box, called legs.
Connected legs indicate a contraction. The relation between legs on
the left and right hand sides of the equality sign is given by their
position. In this figure, we specify the relation between the indices
in a formula like \(B_{kl}\) and the individual lines in the
figure by giving specifying the name of each index on each line.

In this simple case, the figure looks more complicated than the
formula, but it contains complete information on how all indices of
all tensors are connected. To be fair, we should mention the indices
in the formula as well:

\[C_{ij} = \sum_{k} A_{ik} B_{jk}\]

Another simple example is the following product of two vectors and a
matrix:

\[c = u^\dagger A v = \sum_{ij} u^*_i A_{ij} v_j\]

This formula is represented by the following figure:

[image: _images/tensors_matrixelement.png]

Matrix product states (MPS)

The matrix product state representation of a state \(\vert \psi
\rangle\) on four subsystems is given by

\[\langle i j k l \vert \psi \rangle = \psi_{ijkl} = A_i B_j C_k D_l\]

where each \(A_i \in \mathbb C^{1 \times D}\); \(B_j, C_k \in
\mathbb C^{D \times D}\) and \(D_l \in \mathbb C^{D \times 1}\)
(reference: e.g. [Sch11]; exact definition). This construction is also known as tensor
train and it is given by the following simple figure:

[image: _images/tensors_mps.png]
We call \(\psi\) a global tensor and we call the MPS matrices
\(A_i\), \(B_j\) etc. which are associated to a certain
subsystem local tensors. The legs/indices \(i\), \(j\),
… of the original tensor \(\vert \psi \rangle\) are called
physical legs. The additional legs in the matrix product
representation are called virtual legs. The dimension (size) of the
virtual legs are called the representation ranks or compression
ranks. In the physics literature, the virtual legs are often called
bonds and the representation ranks are called bond dimensions.

Very often, we can omit the labels of all the legs. The figure then
becomes very simple:

[image: _images/tensors_mps_no_names.png]
As explained in the next paragraph on MPOs, we usually add dummy
virtual legs of size 1 to our tensors:

[image: _images/tensors_mps_no_names_with_dummies.png]

Matrix product operators (MPO)

The matrix product operator representation of an operator \(\rho\)
on three subsystems is given by

\[\langle i_1 i_2 i_3 \vert \rho \vert j_1 j_2 j_3 \rangle
=
\rho_{i_1i_2i_3,j_1j_2j_3} =
A_{i_1j_1} B_{i_2j_2} C_{i_3j_3}\]

where the \(A_{i_1j_1}\) are row vectors, the \(B_{i_2j_2}\)
are matrices and the \(C_{i_3j_3}\) are column vectors (reference:
e.g. [Sch11]; exact definition). This is represented by the following figure:

[image: _images/tensors_mpo.png]
Be aware that the legs of \(\rho\) are not in the order \(i_1
i_2 i_3 j_1 j_2 j_3\) (called global order) which is expected from
the expression \(\langle i_1 i_2 i_3 \vert \rho \vert j_1 j_2 j_3
\rangle\) and which is obtained by a simple reshape of the matrix
\(\rho\) into a tensor. Instead, the order of the legs of
\(\rho\) must match the order in the MPO construction, which is
\(i_1 j_1 i_2 j_2 i_3 j_3\). We call this latter order local
order. The functions global_to_local and
local_to_global
can convert tensors between the two orders.

In order to simplify the implementation, it is useful to introduce
dummy virtual legs with index size 1 on the left and the right of
the MPS or MPO chain:

[image: _images/tensors_mpo_with_dummies.png]
With these dummy virtual legs, all the tensors in the representation
have exactly two virtual legs.

It is useful to draw the physical column indices upward from the
global and local tensors while leaving the physical row indices
downward:

[image: _images/tensors_mpo_updown.png]
With this arrangement, we can nicely express a product of two MPOs:

[image: _images/tensors_mpo_product.png]
This figure tells us how to obtain the local tensors which represent
the product: We have to compute new tensors as indicated by the shaded
area. The figure also tells us that the representation rank of the
result is the product of the representation rank of the two individual
MPO representations.

Local purification form MPS (PMPS)

The local purification form matrix product state representation (PMPS
or LPMPS) is defined as follows:

[image: _images/tensors_pmps.png]
Here, all the \(i\) indices are actual sites and all the \(j\)
indices are ancilla sites used for the purification (reference:
e.g. [Cue13]; exact definition). The non-negative operator described by this
representation is given by

\[\rho = \operatorname{tr}_{j_1j_2j_3}(\vert \psi \rangle \! \langle \psi \vert)\]

The following figure describes the relation:

[image: _images/tensors_pmps_to_mpo.png]
It also tells us how to convert a PMPS representation into an MPO
representation and how the representation rank changes: The MPO
representation rank is the square of the PMPS representation rank.

General matrix product arrays

Up to now, all examples had the same number of legs on each
site. However, the MPArray is not
restricted to these cases, but can be used to express any local
structure. An example of a inhomogenous tensor is shown in the
following figure:

[image: _images/tensors_mpa.png]

Next steps

The Jupyter notebook mpnum_intro.ipynb in the folder
Notebooks provides an interactive introduction on how to use
mpnum for basic MPS, MPO and MPA operations. Its rendered version
can also be viewed in the Introductory Notebook to mpnum.
If you open the notebook on your own
computer, it allows you to run and modify all the commands
interactively (more information is available in the section “Jupyter
Notebook Quickstart” of the Jupyter documentation [https://jupyter.readthedocs.io/]).

References

	Sch11(1,2)

	Schollwöck, U. (2011). The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326(1), pp. 96–192. DOI: 10.1016/j.aop.2010.09.012 [http://dx.doi.org/10.1016/j.aop.2010.09.012]. arXiv:1008.3477 [http://arxiv.org/abs/1008.3477].

	KGE14

	Kliesch, Gross and Eisert (2014). Matrix-product operators and states: NP-hardness and undecidability. Phys. Rev. Lett. 113, 160503. DOI: 10.1103/PhysRevLett.113.160503. arXiv:1404.4466 [http://arxiv.org/abs/1404.4466].

API reference

Module overview

	mpnum.mparray: Basic matrix product array (MPA) routines and
compression

	mppnum.mpstruct: Underlying structure of MPAs to manage the local
tensors

	mpnum.mpsmpo: Convert matrix product state (MPS), matrix
product operator (MPO) and locally purifying MPS (PMPS)
representations and compute local reduced states.

	mpnum.factory: Generate random, MPS, MPOs, MPDOs, MPAs, etc.

	mpnum.linalg: Compute the smallest eigenvalues & vectors of MPOs

	mpnum.special: Optimized versions of some routines for special cases

	mpnum.povm: Matrix product representation of Positive operator valued
measures (POVM)

	mpnum.povm.localpovm: Pauli-like POVM on a single site

	mpnum.povm.mppovm: Matrix product POVM based on the
Pauli-like POVM

mparray

Core MPArray data structure & general purpose functions

Todo

single site MPAs – what is left?

Todo

Local tensor ownership – see MPArray class comment

Todo

Possible optimization:

	replace integer-for loops with iterator (not obviously possible
everwhere)

	replace internal structure as list of arrays with lazy generator of
arrays (might not be possible, since we often iterate both ways!)

	more in place operations for addition, subtraction, multiplication

Todo

Replace all occurences of self._ltens with self[…] or similar &
benchmark. This will allow easier transition to lazy evaluation of
local tensors

	
class mpnum.mparray.MPArray(ltens)

	Bases: object

Efficient representation of a general N-partite array \(A\) in
matrix product form with open boundary conditions:

(1)\[A_{i_1, \ldots, i_N} = A^{[1]}_{i_1} \ldots A^{[N]}_{i_N}\]

where the \(A^{[k]}\) are local tensors (with N legs/dimensions).
The matrix products in (1) are taken with respect to the left-
and right-most legs (virtual indices) and the multi-index \(i_k\)
corresponds to the true local legs. Open boundary conditions imply that
\(A^{[1]}\) is 1-by-something and \(A^{[N]}\) is something-by-1.

For the details on the data model used for storing the local tensors see
mpstruct.LocalTensors.

Todo

As it is now, e.g. __imul__() modifies
items from self._ltens. This requires
e.g. chain() to take copies of the local
tensors. The data model seems to be that an MPArray
instance owns its local tensors and everyone else,
including each new MPArray instance, must take
copies. Is this correct?

	
__init__(ltens)

	
	Parameters

	ltens – local tensors as instance of
mpstruct.LocalTensors or simply as a list of
numpy.ndarray in the format described at
mpstruct.LocalTensors

	
__len__()

	Returns the number of sites

	
T

	Transpose (=reverse order of) physical legs on each site. See also
transpose() for more fine grained control.

	
adj()

	Hermitian adjoint. Equivalent to self.T.conj().

	
axis_iter(axes=0)

	Returns an iterator yielding Sub-MPArrays of self by iterating
over the specified physical axes.

Example: If self represents a bipartite (i.e. length 2)
array with 2 physical dimensions on each site A[(k,l), (m,n)],
self.axis_iter(0) is equivalent to:

(A[(k, :), (m, :)] for m in range(...) for k in range(...))

	Parameters

	axes – Iterable or int specifiying the physical axes to iterate
over (default 0 for each site)

	Returns

	Iterator over MPArray

	
canonical_form

	See mpstruct.LocalTensors.canonical_form

	
canonicalize(left=None, right=None)

	Brings the MPA to canonical form in place
[Sch11, Sec. 4.4]

Note that we do not support full left- or right-canonicalization. In
general, the right- (left- resp.)most local tensor cannot be in a
canonical form since at least one local tensor must be non-normalized.

The following values for left and right will be needed
most frequently:

	Left-/Right-
canonicalize:

	Do Nothing

	To canonicalize
maximally

	left

	None

	'afull',
len(self) - 1

	right

	None

	'afull',
1

'afull' is short for “almost full” (we do not support
normalizing the outermost sites).

Arbitrary integer values of left and right have the
following meaning:

	self[:left] will be left-normalized

	self[right:] will be right-normalized

In accordance with the last table, the special values
None and 'afull' will be replaced by the
following integers:

	
	None

	'afull'

	left

	0

	len(self) - 1

	right

	len(self)

	1

Exceptions raised:

	Integer argument too large or small: IndexError

	Matrix would be both left- and right-normalized: ValueError

	
compress(method='svd', **kwargs)

	Compress self, modifying it in-place.

Let \(\vert u \rangle\) the original vector and let
\(\vert c \rangle\) the compressed vector. The
compressions we return have the property (cf. [Sch11,
Sec. 4.5.2])

\[\langle u \vert c \rangle = \langle c \vert c \rangle \in (0, \infty).\]

It is a useful property because it ensures

\[\begin{split}\min_{\phi \in \mathbb R} \| u - r e^{i \phi} c \| &= \| u - r c \|,
\quad r > 0, \\
\min_{\mu \in \mathbb C} \| u - \mu c \| &= \| u - c \|\end{split}\]

for the vector 2-norm. Users of this function can compute norm
differences between u and a normalized c via

\[\| u - r c \|^2 = \| u \|^2 + r (r - 2) \langle u \vert c \rangle,
\quad r \ge 0.\]

In the special case of \(\|u\| = 1\) and \(c_0 = c/\| c
\|\) (pure quantum states as MPS), we obtain

\[\| u - c_0 \|^2 = 2(1 - \sqrt{\langle u \vert c \rangle})\]

	Returns

	Inner product \(\langle u \vert c \rangle \in
(0, \infty)\) of the original u and its compression c.

	Parameters

	method – 'svd' or 'var'

Parameters for 'svd':

	Parameters

	
	rank – Maximal rank of the result. (default: None)

	relerr – Maximal fraction of discarded singular values.
Default 0. If both rank and relerr are given, the
smaller resulting rank is used.

	direction – 'right' (sweep from left to right), 'left'
(inverse) or None (choose depending on
canonicalization). (default: None)

	canonicalize – SVD compression works best when the MPA is
brought into full left-/right-cannonical form first. This variable
determines whether cannonical form is enforced before compression
(default: True)

	svdfunc – Which SVD function to use during the compression.
It should follow the conventios of
truncated_svd(), which is also the
default choice. In some circumstances, a partial SVD as provided
by scipy.sparse.linalg.svds() or a randomized SVD such as
randomized_svd() might speed up
computations with no or little loss of accuracy.

Parameters for 'var':

	Parameters

	
	rank – Maximal rank for the result. Either
startmpa or rank is required.

	num_sweeps – Number of variational sweeps (required).

	startmpa – Start vector, also fixes the rank
of the result. Default: Random, with same norm as self.

	randstate – numpy.random.RandomState instance used for
random start vector. (default: numpy.random).

	var_sites – Number of connected sites to be varied
simultaneously (default 1)

Increasing var_sites makes it less likely to get stuck in a
local minimum but is generally slower.

References:

	'svd': Singular value truncation, [Sch11, Sec. 4.5.1]

	'var': Variational compression, [Sch11, Sec. 4.5.2]

	
compression(method='svd', **kwargs)

	Return a compression of self. Does not modify self.

Parameters: See compress().

	Returns

	(compressed_mpa, overlap) where overlap is the inner
product returned by compress().

	
conj()

	Complex conjugate

	
copy()

	Returns a deep copy of the MPA

	
dtype

	Returns the dtype that should be returned by to_array

	
dump(target)

	Serializes MPArray to h5py.Group. Recover using
load().

	Parameters

	target – h5py.Group the instance should be saved to or
path to h5 file (it’s then serialized to /)

	
classmethod from_array(array, ndims=None, has_virtual=False)

	Create MPA from array in local form.

See mpnum.tools.global_to_local() for global
vs. local form.

Computes the (exact up to numerical accuracy) representation of array
as MPA with open boundary conditions, i.e. rank 1 at the boundary. This
is done by factoring off the left and the “physical” legs from the
rest of the tensor via QR decomposition and working its way through
the tensor from the left. This yields a left-canonical representation
of array. [Sch11, Sec. 4.3.1]

The result is a chain of local tensors with ndims physical legs at
each location and has array.ndim // ndims number of sites (assuming
ndims has the same value for each site)

has_virtual allows to treat a part of the linear chain of an MPA
as MPA as well. The rank on the left and right can be different from
one and different from each other in that case. This is useful to
apply SVD compression only to part of an MPA.

	Parameters

	
	array (np.ndarray) – Dense array with global structure
array[(i0), ..., (iN)], i.e. the legs which are factorized into
the same factor are already adjacent. (For me details see
tools.global_to_local())

	ndims – Number of physical legs per site (default array.ndim)
or iterable over number of physical legs

	has_virtual (bool) – True if array already has indices for
the left and right virtual legs

	
classmethod from_array_global(array, ndims=None, has_virtual=False)

	Create MPA from array in global form.

See mpnum.tools.global_to_local() for global vs. local form.

	Parameters and return value: See from_array().

	has_virtual=True is not supported yet.

	
classmethod from_kron(factors)

	Returns the (exact) representation of an n-fold Kronecker (tensor)
product as MPA with ranks 1 and n sites.

	Parameters

	factors – A list of arrays with arbitrary number of physical legs

	Returns

	The kronecker product of the factors as MPA

	
get(indices, astype=None)

	Returns the current MPA but with the first index at each sites
evaluated at the corresponding value of indices

	Parameters

	indices – Length len(self) sequence of index values for
first physical leg at each site

	Returns

	type(self) object

	
group_sites(sites_per_group)

	Group several MPA sites into one site.

The resulting MPA has length len(self) // sites_per_group and
sites_per_group * self.ndims[i] physical legs on site i. The
physical legs on each sites are in local form.

	Parameters

	sites_per_group (int) – Number of sites to be grouped into one

	Returns

	An MPA with sites_per_group fewer sites and more ndims

	
leg2vleg(pos)

	Performs the inverse operation to vleg2leg().

	Parameters

	pos – Number of the virtual to perform the transformation

	Returns

	read-only MPA with transformed virtual

Todo

More appropriate naming for this functions?

	
classmethod load(source)

	Deserializes MPArray from h5py.Group. Serialize using
dump().

	Parameters

	target – h5py.Group containing serialized MPArray or
path to a single h5 File containing serialized MPArray under /

	
lt

	

	
ndims

	Tuple of number of legs per site

	
pad_ranks(rank=None, force_rank=False)

	Increase rank by padding with zeros

This function is useful to prepare initial states for
variational compression. E.g. for a five-qubit pure state with
ranks (2, 2, 4, 2) it is desirable to increase the
ranks to (2, 4, 4, 2) before using it as an
initial state for variational compression.

	Parameters

	
	rank (int) – Increase rank to this value, use max(self.rank)
if None (default: None)

	force_rank – Use full rank even at the beginning and
end of the MPS. See full_rank() for more
details. (default: False)

	Returns

	MPA representation of the same array with padded rank

	
ranks

	Tuple of ranks

	
ravel()

	Flatten the MPA to an MPS, shortcut for self.reshape((-1,))

	
reshape(newshapes)

	Reshape physical legs in place.

Use shape to obtain the shape of the physical legs.

	Parameters

	newshapes – A single new shape or a list of new shape.
Alternatively, you can pass ‘prune’ to get rid of all legs
of dimension 1.

	Returns

	Reshaped MPA

Todo

Why is this here? What’s wrong with the purne function?

	
reverse()

	

	
shape

	List of tuples with the dimensions of each tensor leg at each site

	
singularvals()

	Return singular values of self for all bipartitions

	Returns

	Iterate over bipartitions with 1, 2, … len(self) -
1 sites on the left hand side. Yields a np.ndarray containing
singular values for each bipartition.

Note

May decrease the rank (without changing the represented
tensor).

	
size

	Returns the number of floating point numbers used to represent the
MPArray

>>> from .factory import zero
>>> zero(sites=3, ldim=4, rank=3).lt.shape
((1, 4, 3), (3, 4, 3), (3, 4, 1))
>>> zero(sites=3, ldim=4, rank=3).size
60

	
split(pos)

	Splits the MPA into two by transforming the virtual legs into
local legs according to vleg2leg().

	Parameters

	pos – Number of the virtual to perform the transformation

	Returns

	(mpa_left, mpa_right)

	
split_sites(sites_per_group)

	Split MPA sites into several sites.

The resulting MPA has length len(self) * sites_per_group and
self.ndims[i] // sites_per_group indices on site i.

	Parameters

	sites_per_group (int) – Split each site in that many sites

	Returns

	An mpa with sites_per_group more sites and fewer
ndims

	
sum(axes=None)

	Element-wise sum over physical legs

	Parameters

	axes – Physical legs to sum over

axes can have the following values:

	Sequence of length zero: Sum over nothing

	Sequence of (sequences or None): axes[i] specifies the
physical legs to sum over at site i; None sums over all
physical legs at a site

	Sequence of integers: axes specifies the physical legs to
sum over at each site

	Single integer: Sum over physical leg axes at each site

	None: Sum over all physical legs at each site

To not sum over any axes at a certain site, specify the empty
sequence for that site.

	
to_array()

	Return MPA as array in local form.

See mpnum.tools.global_to_local() for global
vs. local form.

	Returns

	ndarray of shape sum(self.shape, ())

Note

Full arrays can require much more memory than
MPAs. (That’s why you are using MPAs, right?)

	
to_array_global()

	Return MPA as array in global form.

See mpnum.tools.global_to_local() for global
vs. local form.

	Returns

	ndarray of shape sum(zip(*self.shape, ()))

See to_array() for more details.

	
transpose(axes=None)

	Transpose (=reverse order of) physical legs on each site

	Parameters

	axes – New order of the physical axes. If None is passed,
we reverse the order of the legs on each site. (default None)

>>> from .factory import random_mpa
>>> mpa = random_mpa(2, (2, 3, 4), 2)
>>> mpa.shape
((2, 3, 4), (2, 3, 4))
>>> mpa.transpose((2, 0, 1)).shape
((4, 2, 3), (4, 2, 3))

	
vleg2leg(pos)

	Transforms the virtual leg between site pos and pos + 1 into
local legs at those sites. The new leg will be the rightmost one
at site pos and the leftmost one at site pos + 1. The new
rank is 1.

Also see leg2vleg().

	Parameters

	pos – Number of the virtual to perform the transformation

	Returns

	MPA with transformed virtual

Todo

More appropriate naming for this functions?

	
mpnum.mparray.dot(mpa1, mpa2, axes=(-1, 0), astype=None)

	
	Compute the matrix product representation of the contraction of a

	and b over the given axes. [Sch11, Sec. 4.2]

	Parameters

	
	mpa2 (mpa1,) – Factors as MPArrays

	axes – Tuple (ax1, ax2) where ax1 (ax2) is a single
physical leg number or sequence of physical leg numbers
referring to mpa1 (mpa2). The first (second, etc) entries
of ax1 and ax2 will be contracted. Very similar to the
axes argument for numpy.tensordot().
(default: (-1, 0))

Note

Note that the default value of axes is different compared to
numpy.tensordot().

	Parameters

	astype – Return type. If None, use the type of mpa1

	Returns

	Dot product of the physical arrays

	
mpnum.mparray.inject(mpa, pos, num=None, inject_ten=None)

	Interleaved chain product of an MPA and a rank 1 MPA

Return the chain product between mpa and num copies of the local
tensor inject_ten, but place the copies of inject_ten before
site pos inside or outside mpa. You can also supply num =
None and a sequence of local tensors. All legs of the local
tensors are interpreted as physical legs. Placing the local
tensors at the beginning or end of mpa using pos = 0 or pos =
len(mpa) is also supported, but chain() is preferred for
that as it is a much simpler function.

If inject_ten is omitted, use a square identity matrix of size
mpa.shape[pos][0]. If pos == len(mpa), mpa.shape[pos - 1][0]
will be used for the size of the matrix.

	Parameters

	
	mpa – An MPA.

	pos – Inject sites into the MPA before site pos.

	num – Inject num copies. Can be None; in this case
inject_ten must be a sequence of values.

	inject_ten – Physical tensor to inject (if omitted, an
identity matrix will be used; cf. above)

	Returns

	The chain product

pos can also be a sequence of positions. In this case, num and
inject_ten must be either sequences or None, where None is
interpreted as len(pos) * [None]. As above, if num[i] is
None, then inject_ten[i] must be a sequence of values.

	
mpnum.mparray.inner(mpa1, mpa2)

	Compute the inner product <mpa1|mpa2>. Both have to have the same
physical dimensions. If these represent a MPS, inner(...) corresponds
to the canoncial Hilbert space scalar product. If these represent a MPO,
inner(...) corresponds to the Frobenius scalar product (with Hermitian
conjugation in the first argument)

	Parameters

	
	mpa1 – MPArray with same number of physical legs on each site

	mpa2 – MPArray with same physical shape as mpa1

	Returns

	<mpa1|mpa2>

	
mpnum.mparray.local_sum(mpas, embed_tensor=None, length=None, slices=None)

	Embed local MPAs on a linear chain and sum as MPA.

We return the sum over embed_slice(length, slices[i],
mpas[i], embed_tensor) as MPA.

If slices is omitted, we use regular_slices(length,
width, offset) with offset = 1,
width = len(mpas[0]) and length = len(mpas) + width
- offset.

If slices is omitted or if the slices just described are given,
we call _local_sum_identity(), which gives a smaller virtual
dimension than naive embedding and summing.

	Parameters

	
	mpas – List of local MPAs.

	embed_tensor – Defaults to square identity matrix (see
_embed_ltens_identity() for details)

	length – Length of the resulting chain, ignored unless
slices is given.

	slices – slice[i] specifies the position of mpas[i],
optional.

	Returns

	An MPA.

	
mpnum.mparray.localouter(a, b)

	Computes the tensor product of \(a \otimes b\) locally, that is
when a and b have the same number of sites, the new local tensors are the
tensorproducts of the original ones.

	Parameters

	
	a (MPArray) – MPArray

	b (MPArray) – MPArray of same length as a

	Returns

	Tensor product of a and b in terms of their local tensors

	
mpnum.mparray.norm(mpa)

	Computes the norm (Hilbert space norm for MPS, Frobenius norm for MPO)
of the matrix product operator. In contrast to mparray.inner, this can
take advantage of the canonicalization

WARNING This also changes the MPA inplace by normalizing.

	Parameters

	mpa – MPArray

	Returns

	l2-norm of that array

	
mpnum.mparray.normdist(mpa1, mpa2)

	More efficient version of norm(mpa1 - mpa2)

	Parameters

	
	mpa1 – MPArray

	mpa2 – MPArray

	Returns

	l2-norm of mpa1 - mpa2

	
mpnum.mparray.chain(mpas, astype=None)

	Computes the tensor product of MPAs given in *args by adding more
sites to the array.

	Parameters

	
	mpas – Iterable of MPAs in the order as they should appear in the
chain

	astype – dtype of the returned MPA. If None, use the type of the
first MPA.

	Returns

	MPA of length len(args[0]) + ... + len(args[-1])

Todo

Make this canonicalization aware

Todo

Raise warning when casting complex to real dtype

	
mpnum.mparray.partialdot(mpa1, mpa2, start_at, axes=(-1, 0))

	Partial dot product of two MPAs of inequal length.

The shorter MPA will start on site start_at. Local dot products
will be carried out on all sites of the shorter MPA. Other sites
will remain unmodified.

mpa1 and mpa2 can also have equal length if start_at == 0. In
this case, we do the same as dot().

	Parameters

	
	mpa2 (mpa1,) – Factors as MPArrays, length must be inequal.

	start_at – The shorter MPA will start on this site.

	axes – See axes argument to dot().

	Returns

	MPA with length of the longer MPA.

	
mpnum.mparray.partialtrace(mpa, axes=(0, 1), mptype=None)

	Computes the trace or partial trace of an MPA.

This function is most useful for computing traces of an MPO or MPA over
given physical legs. For obtaining partial traces (i.e., reduced states)
of an MPO, mpnum.mpsmpo.reductions_mpo() will be more convenient.

By default (axes=(0, 1)) compute the trace and return the value as
length-one MPA with zero physical legs.

For axes=(m, n) with integer m, trace over the given axes at all
sites and return a length-one MPA with zero physical legs. (Use
trace() to get the value directly.)

For axes=(axes1, axes2, ...) trace over axesN at site N, with
axesN=(axisN_1, axisN_2) tracing the given physical legs and
axesN=None leaving the site invariant. Afterwards, prune() is
called to remove sites with zero physical legs from the result.

	Parameters

	
	mpa – MPArray

	axes – Axes for trace, (axis1, axis2) or (axes1, axes2, …)
with axesN=(axisN_1, axisN_2) or axesN=None.

	mptype – Which constructor to call with the new local tensors
(default: type(mpa))

	Returns

	An MPArray (possibly one site with zero physical legs)

	
mpnum.mparray.prune(mpa, singletons=False)

	Contract sites with zero (physical) legs.

	Parameters

	
	mpa (MPArray) – MPArray or iterator over local tensors

	singletons – If True, also contract sites where all physical
legs have size 1 (default: False)

	Returns

	An MPArray (of possibly smaller length)

	
mpnum.mparray.regular_slices(length, width, offset)

	Iterate over regular slices on a linear chain.

Put slices on a linear chain as follows:

>>> n = 5
>>> [tuple(range(*s.indices(n))) for s in regular_slices(n, 3, 2)]
[(0, 1, 2), (2, 3, 4)]
>>> n = 7
>>> [tuple(range(*s.indices(n))) for s in regular_slices(n, 3, 2)]
[(0, 1, 2), (2, 3, 4), (4, 5, 6)]

The scheme is illustrated by the following figure:

	###### width #######

	

	offset

	overlap

	offset

	
	####### width ######

Todo

This table needs cell borders in the HTML output (->
CSS) and the tabularcolumns command doesn’t work.

Note that the overlap may be larger than, equal to or smaller than
zero.

We enforce that the last slice coincides with the end of the
chain, i.e. (length - width) / offset must be integer. We
produce (length - width) / offset + 1 slices and the i-th
slice is slice(offset * i, offset * i + width), with
i starting at zero.

	Parameters

	
	length (int) – The length of the chain.

	width (int) – The width of each slice.

	offset (int) – Difference between starting positions of
successive slices. First slice starts at 0.

	Returns

	Iterator over slices.

	
mpnum.mparray.sandwich(mpo, mps, mps2=None)

	Compute <mps|MPO|mps> efficiently

This function computes the same value as mp.inner(mps,
mp.dot(mpo, mps)) in a more efficient way.

The runtime of this method scales with D**3 * Dp + D**2 * Dp**3
where D and Dp are the ranks of mps and
mpo. This is more efficient than mp.inner(mps, mp.dot(mpo,
mps)), whose runtime scales with D**4 * Dp**3, and also more
efficient than mp.dot(mps.conj(), mp.dot(mpo,
mps)).to_array(), whose runtime scales with D**6 * Dp**3.

If mps2 is given, <mps2|MPO|mps> is computed instead
(i.e. mp.inner(mps2, mp.dot(mpo, mps)); see also dot()).

	
mpnum.mparray.embed_slice(length, slice_, mpa, embed_tensor=None)

	Embed a local MPA on a linear chain.

	Parameters

	
	length (int) – Length of the resulting MPA.

	slice (slice) – Specifies the position of mpa in the
result.

	mpa (MPArray) – MPA of length slice_.stop -
slice_.start.

	embed_tensor – Defaults to square identity matrix (see
_embed_ltens_identity() for details)

	Returns

	MPA of length length

	
mpnum.mparray.trace(mpa, axes=(0, 1))

	Compute the trace of the given MPA.

If you specify axes (see partialtrace() for details), you must
ensure that the result has no physical legs anywhere.

	Parameters

	
	mpa – MParray

	axes – Axes for trace, (axis1, axis2) or (axes1, axes2, ...)
with axesN=(axisN_1, axisN_2) or axesN=None.
(default: (0, 1))

	Returns

	A single scalar of type mpa.dtype

	
mpnum.mparray.diag(mpa, axis=0)

	Returns the diagonal elements mpa[i, i, ..., i]. If mpa
has more than one physical dimension, the result is a numpy array with
MPArray entries, otherwise its a numpy array with floats.

	Parameters

	
	mpa – MPArray with shape > axis

	axis – The physical index to take diagonals over

	Returns

	Array containing the diagonal elements (each diagonal
element is an MPArray with the physical dimension
reduced by one, note that an MPArray with
dimension 0 is a simple number)

	
mpnum.mparray.sumup(mpas, weights=None)

	Returns the sum of the MPArrays in mpas. Same as

functools.reduce(mp.MPArray.__add__, mpas)

but should be faster as we can get rid of intermediate allocations.

	Parameters

	mpas – Iterator over MPArray

	Returns

	Sum of mpas

	
mpnum.mparray.full_rank(ldims)

	Computes a list of maximal ranks for a tensor with given local dimesions

	Parameters

	ldims – Dimensions of the legs of the tensor per site. Can be either
passed as one number per site ([2, 5, 2]) or if there are multiple
legs per site as a list of tuples similar to MPArray.shape
(e.g. [(2,), (3, 4), (5,)]))

	Returns

	Tuple of ranks that are maximal for the local dimensions
ldims.

>>> full_rank([3] * 5)
[3, 9, 9, 3]
>>> full_rank([2] * 8)
[2, 4, 8, 16, 8, 4, 2]
>>> full_rank([(2, 3)] * 4)
[6, 36, 6]

mpstruct

Core data structure & routines to manage local tensors

	
class mpnum.mpstruct.LocalTensors(ltens, cform=(None, None))

	Bases: object

Core data structure to manage the local tensors of a
MPArray.

The local tensors are kept in _ltens, a list of
numpy.ndarrays such that _ltens[i] corresponds to the
local tensor of site i.

If there are \(k\) (non-virtual) indices at site \(i\), the
corresponding local tensor is a ndarray with ndim == k + 2. The two
additional indices of the local tensor correspond to the virtual legs. We
reserve the 0th index of the local tensor for the virtal leg coupling
to site \(i - 1\) and the last index for the virtual leg coupling to
site \(i + 1\).

Therefore, if the physical legs at site \(i\) have dimensions
\(d_1, \ldots, d_k\), the corresponding local tensor has shape
\((r_{i-1}, d_1, \ldots, d_k, r_{i})\). Here, \(r_{i-1}\) and
\(r_i\) denote the rank between sites \((i - 1, i)\) and
\((i, i + 1)\), respectively.

To keep the data structure consistent, we include the left virutal leg of
the leftmost local tensor as well as the right virtual leg of the rightmost
local tensor as dummy indices of dimension 1.

	
canonical_form

	Tensors which are currently in left/right-canonical form.

Returns tuple (left, right) such that

	self[:left] are left-normalized

	self[right:] are right-normalized.

	
copy()

	Returns a deep copy of the local tensors

	
shape

	List of tuples with the dimensions of each tensor leg at each site

	
update(index, tens, canonicalization=None)

	Update the local tensor at site index to the new value tens.
Checks the rank and shape of the new values to keep the MPA consistent.
Therefore, some actions such as changing the rank between two sites
require to update both sites at the same time, which can be done by
passing in multiple values as arguments.

	Parameters

	
	index – Integer/slice. Site index/indices of the local tensor/
tensors to be updated.

	tens – New local tensor as numpy.ndarray. Alternatively,
sequence over multiple ndarrays (in case index is a slice).

	canonicalization – If tens is left-/right-normalized, pass
'left'/'right', respectively. Otherwise, pass None
(default None). In case index is a slice, either pass a
sequence of the corresponding values or a single value, which is
repeated for each site updated.

factory

Module to create random test instances of matrix product arrays

	
mpnum.factory.eye(sites, ldim)

	Returns a MPA representing the identity matrix

	Parameters

	
	sites – Number of sites

	ldim – Int-like local dimension or iterable of local dimensions

	Returns

	Representation of the identity matrix as MPA

>>> I = eye(4, 2)
>>> I.ranks, I.shape
((1, 1, 1), ((2, 2), (2, 2), (2, 2), (2, 2)))
>>> I = eye(3, (3, 4, 5))
>>> I.shape
((3, 3), (4, 4), (5, 5))

	
mpnum.factory.random_local_ham(sites, ldim=2, intlen=2, randstate=None)

	Generates a random Hamiltonian on sites sites with local dimension
ldim, which is a sum of local Hamiltonians with interaction length
intlen.

	Parameters

	
	sites – Number of sites

	ldim – Local dimension

	intlen – Interaction length of the local Hamiltonians

	Returns

	MPA representation of the global Hamiltonian

	
mpnum.factory.random_mpa(sites, ldim, rank, randstate=None, normalized=False, force_rank=False, dtype=<class 'numpy.float64'>)

	Returns an MPA with randomly choosen local tensors (real by default)

	Parameters

	
	sites – Number of sites

	ldim – Physical legs, depending on the type passed:

	scalar: Single physical leg for each site with given dimension

	iterable of scalar: Same physical legs for all sites

	iterable of iterable: Generated MPA will have exactly this
as ndims

	rank – Desired rank, depending on the type passed:

	scalar: Same rank everywhere

	iterable of length sites - 1: Generated MPA will
have exactly this as ranks

	randstate – numpy.random.RandomState instance or None

	normalized – Resulting mpa has mp.norm(mpa) == 1

	force_rank – If True, the rank is exaclty rank.
Otherwise, it might be reduced if we reach the maximum sensible rank.

	dtype – Type of the returned MPA. Currently only
np.float_ and np.complex_ are implemented (default:
np.float_, i.e. real values).

	Returns

	Randomly choosen matrix product array

Entries of local tensors are drawn from a normal distribution of
unit variance. For complex values, the real and imaginary parts
are independent and have unit variance.

>>> mpa = random_mpa(4, 2, 10, force_rank=True)
>>> mpa.ranks, mpa.shape
((10, 10, 10), ((2,), (2,), (2,), (2,)))

>>> mpa = random_mpa(4, (1, 2), 10, force_rank=True)
>>> mpa.ranks, mpa.shape
((10, 10, 10), ((1, 2), (1, 2), (1, 2), (1, 2)))

>>> mpa = random_mpa(4, [(1,), (2, 3), (4, 5), (1,)], 10, force_rank=True)
>>> mpa.ranks, mpa.shape
((10, 10, 10), ((1,), (2, 3), (4, 5), (1,)))

The following doctest verifies that we do not change how random
states are generated, ensuring reproducible results. In addition,
it verifies the returned dtype:

>>> rng = np.random.RandomState(seed=3208886881)
>>> random_mpa(2, 2, 3, rng).to_array()
array([[-0.7254321 , 3.44263486],
 [-0.17262967, 2.4505633]])
>>> random_mpa(2, 2, 3, rng, dtype=np.complex_).to_array()
array([[-0.53552415+1.39701566j, -2.12128866+0.57913253j],
 [-0.32652114+0.51490923j, -0.32222320-0.32675463j]])

	
mpnum.factory.random_mpdo(sites, ldim, rank, randstate=<module 'numpy.random' from '/usr/lib/python3/dist-packages/numpy/random/__init__.py'>)

	Returns a randomly choosen matrix product density operator (i.e.
positive semidefinite matrix product operator with trace 1).

	Parameters

	
	sites – Number of sites

	ldim – Local dimension

	rank – Rank

	randstate – numpy.random.RandomState instance

	Returns

	randomly choosen classicaly correlated matrix product density op.

>>> rho = random_mpdo(4, 2, 4)
>>> rho.ranks, rho.shape
((4, 4, 4), ((2, 2), (2, 2), (2, 2), (2, 2)))
>>> rho.canonical_form
(0, 4)

	
mpnum.factory.random_mps(sites, ldim, rank, randstate=None, force_rank=False)

	Returns a randomly choosen normalized matrix product state

	Parameters

	
	sites – Number of sites

	ldim – Local dimension

	rank – Rank

	randstate – numpy.random.RandomState instance or None

	force_rank – If True, the rank is exaclty rank.
Otherwise, it might be reduced if we reach the maximum sensible rank.

	Returns

	randomly choosen matrix product (pure) state

>>> mps = random_mps(4, 2, 10, force_rank=True)
>>> mps.ranks, mps.shape
((10, 10, 10), ((2,), (2,), (2,), (2,)))
>>> mps.canonical_form
(0, 4)
>>> round(abs(1 - mp.inner(mps, mps)), 10)
0.0

	
mpnum.factory.random_mpo(sites, ldim, rank, randstate=None, hermitian=False, normalized=True, force_rank=False)

	Returns an hermitian MPO with randomly choosen local tensors

	Parameters

	
	sites – Number of sites

	ldim – Local dimension

	rank – Rank

	randstate – numpy.random.RandomState instance or None

	hermitian – Is the operator supposed to be hermitian

	normalized – Operator should have unit norm

	force_rank – If True, the rank is exaclty rank.
Otherwise, it might be reduced if we reach the maximum sensible rank.

	Returns

	randomly choosen matrix product operator

>>> mpo = random_mpo(4, 2, 10, force_rank=True)
>>> mpo.ranks, mpo.shape
((10, 10, 10), ((2, 2), (2, 2), (2, 2), (2, 2)))
>>> mpo.canonical_form
(0, 4)

	
mpnum.factory.zero(sites, ldim, rank, force_rank=False)

	Returns a MPA with localtensors beeing zero (but of given shape)

	Parameters

	
	sites – Number of sites

	ldim – Depending on the type passed (checked in the following order)

	iterable of iterable: Detailed list of physical dimensions,
retured mpa will have exactly this for mpa.shape

	iterable of scalar: Same physical dimension for each site

	scalar: Single physical leg for each site with given
dimension

	rank – Rank

	force_rank – If True, the rank is exaclty rank.
Otherwise, it might be reduced if we reach the maximum sensible rank.

	Returns

	Representation of the zero-array as MPA

	
mpnum.factory.diagonal_mpa(entries, sites)

	Returns an MPA with entries on the diagonal and zeros otherwise.

	Parameters

	entries (numpy.ndarray) – one-dimensional array

	Returns

	MPArray with rank len(entries).

mpsmpo

Matrix Product State (MPS) and Operator (MPO) functions

The Introduction also covers the definitions mentioned
below.

Definitions

We consider a linear chain of \(n\) sites with associated Hilbert
spaces mathcal H_k = C^{d_k}, \(d_k\), \(k \in [1..n] :=
\{1, 2, \ldots, n\}\). The set of linear operators \(\mathcal H_k
\to \mathcal H_k\) is denoted by \(\mathcal B_k\). We write
\(\mathcal H = \mathcal H_1 \otimes \cdots \otimes \mathcal H_n\)
and the same for \(\mathcal B\).

We use the following three representations:

	Matrix product state (MPS): Vector \(\lvert \psi \rangle \in
\mathcal H\)

	Matrix product operator (MPO): Operator \(M \in \mathcal B\)

	Locally purified matrix product state (PMPS): Positive semidefinite
operator \(\rho \in \mathcal B\)

All objects are represented by \(n\) local tensors.

Matrix product state (MPS)

Represent a vector \(\lvert \psi \rangle \in \mathcal H\) as

\[\langle i_1 \ldots i_n \vert \psi \rangle
= A^{(1)}_{i_1} \cdots A^{(n)}_{i_n},
\quad A^{(k)}_{i_k} \in \mathbb C^{D_{k-1} \times D_k},
\quad D_0 = 1 = D_n.\]

The \(k\)-th local tensor is \(T_{l,i,r} =
(A^{(k)}_i)_{l,r}\).

The vector \(\lvert \psi \rangle\) can be a quantum state, with
the density matrix given by \(\rho = \lvert \psi \rangle \langle
\psi \rvert \in \mathcal B\). Reference: E.g. [Sch11].

Matrix product operator (MPO)

Represent an operator \(M \in \mathcal B\) as

\[\langle i_1 \ldots i_n \vert M \vert j_1 \ldots j_n \rangle
= A^{(1)}_{i_1 j_1} \cdots A^{(n)}_{i_n j_n},
\quad A^{(k)}_{i_k j_k} \in \mathbb C^{D_{k-1} \times D_k},
 \quad D_0 = 1 = D_n.\]

The \(k\)-th local tensor is \(T_{l,i,j,r} = (A^{(k)}_{i
j})_{l,r}\).

This representation can be used to represent a mixed quantum state
\(\rho = M\), but it is not limited to positive semidefinite
\(M\). Reference: E.g. [Sch11].

Locally purified matrix product state (PMPS)

Represent a positive semidefinite operator \(\rho \in \mathcal B\)
as follows: Let \(\mathcal H_k' = \mathbb C^{d'_k}\) with suitable
\(d'_k\) and \(\mathcal P = \mathcal H_1 \otimes \mathcal
H'_1 \otimes \cdots \otimes \mathcal H_n \otimes \mathcal H'_n\). Find
\(\vert \Phi \rangle \in \mathcal P\) such that

\[\rho = \operatorname{tr}_{\mathcal H'_1, \ldots, \mathcal H'_n}
(\lvert \Phi \rangle \langle \Phi \rvert)\]

and represent \(\lvert \Phi \rangle\) as

\[\langle i_1 i'_1 \ldots i_n i'_n \vert \Phi \rangle
= A^{(1)}_{i_1 i'_1} \cdots A^{(n)}_{i_n i'_n},
\quad A^{(k)}_{i_k j_k} \in \mathbb C^{D_{k-1} \times D_k},
\quad D_0 = 1 = D_n.\]

The \(k\)-th local tensor is \(T_{l,i,i',r} = (A^{(k)}_{i
i'})_{l,r}\).

The ancillary dimensions \(d'_i\) are not determined by the
\(d_i\) but depend on the state. E.g. if \(\rho\) is pure, one
can set all \(d_i = 1\). Reference: E.g. [Cue13].

Todo

Are derived classes MPO/MPS/PMPS of any help?

Todo

I am not sure the current definition of PMPS is the most elegant
for our purposes…

References:

	[Cue13] De las Cuevas, G., Schuch, N., Pérez-García, D., and Cirac,
J. I. (2013). “Purifications of multipartite states: limitations and
constructive methods”. New J. Phys. 15(12), p. 123021. DOI:
10.1088/1367-2630/15/12/123021 [http://dx.doi.org/10.1088/1367-2630/15/12/123021]. arXiv: 1308.1914 [http://arxiv.org/abs/1308.1914].

	
mpnum.mpsmpo.mps_to_mpo(mps)

	Convert a pure MPS to a mixed state MPO.

	Parameters

	mps (MPArray) – An MPA with one physical leg

	Returns

	An MPO (density matrix as MPA with two physical legs)

	
mpnum.mpsmpo.mps_to_pmps(mps)

	Convert a pure MPS into a local purification MPS mixed state.

The ancilla legs will have dimension one, not increasing the
memory required for the MPS.

	Parameters

	mps (MPArray) – An MPA with one physical leg

	Returns

	An MPA with two physical legs (system and ancilla)

	
mpnum.mpsmpo.pmps_dm_to_array(pmps, global_=False)

	Convert PMPS to full array representation of the density matrix

The runtime of this method scales with D**3 instead of D**6 where
D is the rank and D**6 is the scaling of using pmps_to_mpo()
and to_array(). This is useful for obtaining reduced states
of a PMPS on non-consecutive sites, as normalizing before using
pmps_to_mpo() may not be sufficient to reduce the rank
in that case.

Note

The resulting array will have dimension-1 physical legs removed.

	
mpnum.mpsmpo.pmps_reduction(pmps, support)

	Convert a PMPS to a PMPS representation of a local reduced state

	Parameters

	support – Set of sites to keep

	Returns

	Sites traced out at the beginning or end of the chain
are removed using reductions_pmps() and a suitable
normalization. Sites traced out in the middle of the chain are
converted to sites with physical dimension 1 and larger
ancilla dimension.

	
mpnum.mpsmpo.pmps_to_mpo(pmps)

	Convert a local purification MPS to a mixed state MPO.

A mixed state on n sites is represented in local purification MPS
form by a MPA with n sites and two physical legs per site. The
first physical leg is a ‘system’ site, while the second physical
leg is an ‘ancilla’ site.

	Parameters

	pmps (MPArray) – An MPA with two physical legs (system and ancilla)

	Returns

	An MPO (density matrix as MPA with two physical legs)

	
mpnum.mpsmpo.pmps_to_mps(pmps)

	Convert a PMPS with unit ancilla dimensions to a simple MPS

If all ancilla dimensions of the PMPS are equal to unity, they are
removed. Otherwise, an AssertionError is raised.

	
mpnum.mpsmpo.reductions_mpo(mpa, width=None, startsites=None, stopsites=None)

	Iterate over MPO partial traces of an MPO

The support of the i-th result is range(startsites[i],
stopsites[i]).

	Parameters

	
	mpa (mpnum.mparray.MPArray) – An MPO

	startsites – Defaults to range(len(mpa) - width +
1).

	stopsites – Defaults to [start + width for start in
startsites]. If specified, we require startsites to be
given and width to be None.

	width – Number of sites in support of the results. Default
None. Must be specified if one or both of startsites and
stopsites are not given.

	Returns

	Iterator over partial traces as MPO

	
mpnum.mpsmpo.reductions_mps_as_mpo(mps, width=None, startsites=None, stopsites=None)

	Iterate over MPO mpdoreduced states of an MPS

width, startsites and stopsites: See
reductions_mpo().

	Parameters

	mps – Pure state as MPS

	Returns

	Iterator over reduced states as MPO

	
mpnum.mpsmpo.reductions_mps_as_pmps(mps, width=None, startsites=None, stopsites=None)

	Iterate over PMPS reduced states of an MPS

width, startsites and stopsites: See
reductions_mpo().

	Parameters

	mps – Pure state as MPS

	Returns

	Iterator over reduced states as PMPS

	
mpnum.mpsmpo.reductions_pmps(pmps, width=None, startsites=None, stopsites=None)

	Iterate over PMPS partial traces of a PMPS

width, startsites and stopsites: See
reductions_mpo().

	Parameters

	pmps – Mixed state in locally purified MPS representation
(PMPS, see Definitions)

	Returns

	Iterator over reduced states as PMPS

	
mpnum.mpsmpo.reductions(state, mode, **kwargs)

	
Todo

Add docstring

linalg

Linear algebra with matrix product arrays

Currently, we support computing extremal eigenvalues and eigenvectors
of MPOs.

	
mpnum.linalg.eig(mpo, num_sweeps, var_sites=2, startvec=None, startvec_rank=None, randstate=None, eigs=None)

	Iterative search for MPO eigenvalues

Note

This function can return completely inaccurate values. You are
responsible for supplying a large enough startvec_rank
(or startvec with large enough rank) and
num_sweeps.

This function attempts to find eigenvalues by iteratively
optimizing \(\lambda = \langle \psi \vert H \vert \psi
\rangle\) where \(H\) is the operator supplied in the argument
mpo. Specifically, we attempt to de- or increase
\(\lambda\) by optimizing over several neighbouring local
tensors of the MPS \(\vert \psi \rangle\) simultaneously (the
number given by var_sites).

The algorithm used here is described e.g. in
[Sch11, Sec. 6.3].
For var_sites = 1, it is called “variational MPS ground state
search” or “single-site DMRG” [Sch11, Sec. 6.3, p. 69]. For
var_sites > 1, it is called “multi-site DMRG”.

	Parameters

	
	mpo (MPArray) – A matrix product operator (MPA with two physical legs)

	num_sweeps (int) – Number of sweeps to do (required)

	var_sites (int) – Number of neighbouring sites to be varied
simultaneously

	startvec – Initial guess for eigenvector (default: random MPS with
rank startvec_rank)

	startvec_rank – Rank of random start vector (required and
used only if no start vector is given)

	randstate – numpy.random.RandomState instance or None

	eigs – Function which computes one eigenvector of the local
eigenvalue problem on var_sites sites

	Returns

	eigval, eigvec_mpa

The eigs parameter defaults to

eigs = functools.partial(scipy.sparse.linalg.eigsh, k=1, tol=1e-6)

By default, eig() computes the eigenvalue with largest
magnitude. To compute e.g. the smallest eigenvalue (sign
included), supply which='SA' to eigsh. For other
possible values, refer to the SciPy documentation.

It is recommendable to supply a value for the tol
parameter of eigsh(). Otherwise, eigsh() will work
at machine precision which is rarely necessary.

Note

One should keep in mind that a variational method (such as the
one implemented in this function) can only provide e.g. an
upper bound on the lowest eigenvalue of an MPO. Deciding
whether a given MPO has an eigenvalue which is smaller than a
given threshold has been shown to be NP-hard (in the number of
parameters of the MPO representation) [KGE14].

Comments on the implementation, for var_sites = 1:

References are to the arXiv version of [Sch11] assuming we replace
zero-based with one-based indices there.

Psi^A_{i-1} and Psi^B_{i} are identity matrices because of
normalization. (See Fig. 42 on p. 67 and the text; see also
Figs. 14 and 15 and pages 28 and 29.)

	
mpnum.linalg.eig_sum(mpas, num_sweeps, var_sites=2, startvec=None, startvec_rank=None, randstate=None, eigs=None)

	Iterative search for eigenvalues of a sum of MPOs/MPSs

Try to compute the ground state of the sum of the objects in
mpas. MPOs are taken as-is. An MPS \(\vert\psi\rangle\)
adds \(\vert\psi\rangle \langle\psi\vert\) to the sum.

This function executes the same algorithm as eig() applied
to an uncompressed MPO sum of the elements in mpas, but it
obtains the ingredients for the local optimization steps using
less memory and execution time. In particular, this function does
not have to convert an MPS in mpas to an MPO.

Todo

Add information on how the runtime of eig() and
eig_sum() scale with the the different ranks. For
the time being, refer to the benchmark test.

	Parameters

	mpas – A sequence of MPOs or MPSs

Remaining parameters and description: See eig().

Algorithm: [Sch11, Sec. 6.3]

povm

povm.mppovm

Matrix-product representation of POVMs

This module provides the following classes:

	MPPovm: A matrix product representation of a multi-site
POVM.

For example, for a linear chain of n qubits this class can
represent the POVM of the observable XX…X with \(2^n\)
elements efficiently. It is also possible to sample from the
probability distribution of this POVM efficiently.

	MPPovmList: A list of MP-POVMs.

This class can be used e.g. to obtain estimated expectation values
of the local observable XX1…1 on two qubits from from samples
for the global observables XX…X and XXY…Y (cf. below on
Linear combinations of functions of POVM outcomes).

	The methods MPPovm.embed(),
MPPovm.block()/MPPovmList.block(),
MPPovm.repeat()/MPPovmList.repeat() as well as
pauli_mpp() and pauli_mpps() allow for convenient
construction of MP-POVMs and MP-POVM lists.

Linear combinations of functions of POVM outcomes

In order to perform the just mentioned estimation of probabilities of
one POVM from samples of another POVM with possibly larger support, we
provide a function which can estimate linear functions of functions of
POVM outcomes: Let \(M\) a finite index set with real elements
\(y \in M \subset \mathbb R\) such that \(\hat y\) are the
positive semidefinite POVM elements which sum to the identity,
\(\sum_{y \in M} \hat y = 1\). Given a state \(\rho\), the
probability mass function (PMF) of the probability distribution given
by the POVM and the state can be expressed as \(p_y =
\operatorname{tr}(\rho \hat y)\), \(y \in M\) or as \(p(x) =
\sum_{y \in M} \delta(x - y) p_y\). Let further \(D = (x_1,
\ldots, x_m)\), \(x_k \in M\) a set of samples from \(p(x)\)
and let \(f \colon M \to \mathbb R\) an arbitrary function of the
POVM outcomes. The true value \(\langle f \rangle_p = \int f(y)
p(y) \mathrm d y\) can then be estimated using the sample average
\(\langle f \rangle_D = \frac1m \sum_{k=1}^m f(x_k) p_{x_k}\). In
the same way, a linear combination \(f = \sum c_i f_i\) of
functions \(f_i \colon M \to \mathbb R\) of POVM outcomes can be
estimated by \(\langle f \rangle_D = \sum_i c_i \langle f_i
\rangle_D\). Such a linear combination of functions of POVM outcomes
can be estimated using MPPovm.est_lfun(). More technically,
the relation \(\langle \langle f \rangle_D \rangle_{p_m} =
\langle f \rangle_p\) shows that \(\langle f \rangle_D\) is an
unbiased estimator for the true expectation value \(\langle f
\rangle_p\); the probability distribution of the dataset \(D\) is
given by the sampling distribution \(p_m(D) = p(x_1) \ldots
p(x_m)\).

Estimates of the POVM probabilities \(p_y\) can also be expressed
as functions of this kind: Consider the function

\[\begin{split}\theta_y(x) =
\begin{cases}
 1, & x = y, \\
 0, & \text{otherwise.}
\end{cases}\end{split}\]

The true value of this function under \(p(x)\) is \(\langle
\theta_y \rangle_p = p_y\) and the sample average \(\langle
\theta_y \rangle_D\) provides an estimator for \(p_y\). In order to
estimate probabilities of one POVM from samples for another POVM, such
a function can be used: E.g. to estimate the probability of the
\((+1, +1)\) outcome of the POVM XX1…1, we can define a
function which is equal to 1 if the outcome of the POVM XX…X on
the first two sites is equal to \((+1, +1)\) and zero
otherwise. The sample average of this function over samples for the
latter POVM XX…X will estimate the desired probability. This
approach is implemented in MPPovm.est_pmf_from(). If samples
from more than one POVM are available for estimating a given
probability, a weighted average of estimators can be used as
implemented in MPPovm.est_pmf_from_mpps(); the list of
MP-POVMs for which samples are available is passed as an
MPPovmList instance. Finally, the function
MPPovmList.est_lfun_from() allows estimation of a linear
combination of probabilities from different POVMs using samples of a
second list of MP-POVMs. This function also estimates the variance of
the estimate. In order to perform the two estimation procedures, for
each probability, we construct an estimator from a weighted average of
functions of outcomes of different POVMs, as has been explained
above. For more simple settings, MPPovmList.est_lfun() is also
available.

True values of the functions just mentioned can be obtained from
MPPovm.lfun(), MPPovmList.lfun() and
MPPovmList.lfun_from(). All functions return both the true
expectation value and the variance of the expectation value.

The variance of the (true) expectation value \(\langle f
\rangle_p\) of a function \(f\colon M \to \mathbb R\) is given by
\(\operatorname{var}_p(f) = \operatorname{cov}_p(f, f)\) with
\(\operatorname{cov}_p(f, g) = \langle fg \rangle_p - \langle f
\rangle_p \langle g \rangle_p\). The variance of the estimate
\(\langle f \rangle_D\) is given by
\(\operatorname{var}_{p_m}(\langle f \rangle_D) = \frac1m
\operatorname{var}_p(f)\) where \(p_m(D)\) is the sampling
distribution from above. An unbiased estimator for the covariance
\(\operatorname{cov}_p(f, g)\) is given by \(\frac{m}{m-1}
\operatorname{cov}_D(f, g)\) where the sample covariance
\(\operatorname{cov}_D(f, g)\) is defined in terms of sample
averages in the usual way, \(\operatorname{cov}_D(f, g) = \langle
fg \rangle_D - \langle f \rangle_D \langle g \rangle_D\). This
estimator is used by MPPovm.est_lfun().

Todo

Explain the details of the variance estimation, in particular the
difference between the variances returned from
MPPovmList.lfun() and MPPovmList.lfun_from(). Check the
mean square error.

Add a good references explaining all facts mentioned above and for
further reading.

Document the runtime and memory cost of the functions.

Class and function reference

	
class mpnum.povm.mppovm.MPPovm(*args, **kwargs)

	Bases: mpnum.mparray.MPArray

MPArray representation of multipartite POVM

There are two different ways to write down a POVM in matrix product form

	
	As a list of matrix product operators, where each entry corresponds to

	a single POVM element

	As a matrix proudct array with 3 physical legs:

[POVM index, column index, row index]

that is, the first physical leg of the MPArray corresponds to
the index of the POVM element. This representation is
especially helpful for computing expectation values with
MPSs/MPDOs.

Here, we choose the second.

Todo

This class should provide a function which returns
expectation values as full array. (Even though computing
expectation values using the POVM struture brings advantages,
we usually need the result as full array.) This function
should also replace small negative probabilities by zero and
canonicalize the sum of all probabilities to unity (if the
deviation is non-zero but small). The same checks should also
be implemented in localpovm.POVM.

Todo

Right now we use this class for multi-site POVMs with
elements obtained from every possible combination of the
elements of single-site POVMs: The POVM index is split across
all sites. Explore whether and how this concept can also be
useful in other cases.

	
block(nr_sites)

	Embed an MP-POVM on local blocks

The returned MPPovmList will contain self embedded
at every possible position on len(self) neighbouring sites
in a chain of length nr_sites. The remaining sites are not
measured (self.embed()).

self must a have a uniform local Hilbert space dimension.

	Parameters

	nr_sites – Number of sites of the resulting MP-POVMs

	
block_pmfs_as_array(state, mode, asarray=False, eps=1e-10, **redarg)

	
Todo

Add docstring

	
elements

	Returns an iterator over all POVM elements. The result is the i-th
POVM element in MPO form.

It would be nice to call this method __iter__, but this
breaks mp.dot(mppovm, …). In addition,
next(iter(mppovm)) would not be equal to mppovm[0].

	
embed(nr_sites, startsite, local_dim)

	Embed MP-POVM into larger system

Applying the resulting embedded MP-POVM to a state rho gives
the same result as applying the original MP-POVM self on the
reduced state of sites range(startsite, startsite +
len(self)) of rho.

	Parameters

	
	nr_sites – Number of sites of the resulting MP-POVM

	startsite – Position of the first site of self in the
resulting MP-POVM

	local_dim – Local dimension of sites to be added

	Returns

	MP-POVM with self on sites range(startsite,
startsite + len(self)) and MPPovm.eye() elsewhere

	
est_lfun(coeff, funs, samples, weights=None, eps=1e-10)

	Estimate a linear combination of functions of POVM outcomes

This function estimates the function with exact value given by
MPPovm.lfun(); see there for description of the
parameters coeff and funs.

	Parameters

	
	samples (np.ndarray) – A shape (n_samples,
len(self.nsoutdims)) with samples from self

	weights – A length n_samples array for weighted
samples. You can submit counts by passing them as
weights. The number of samples used in average and
variance estimation is determined by weights.sum() if
weights is given.

	Returns

	(est, var): Estimated value and estimated variance
of the estimated value. For details, see
Linear combinations of functions of POVM outcomes.

	
est_pmf(samples, normalize=True, eps=1e-10)

	Estimate probability mass function from samples

	Parameters

	
	samples (np.ndarray) – (n_samples, len(self.nsoutdims))
array of samples

	normalize (bool) – True: Return normalized probability
estimates (default). False: Return integer outcome counts.

	Returns

	Estimated probabilities as ndarray est_pmf with
shape self.nsoutdims

n_samples * est_pmf[i1, …, ik] provides the number of
occurences of outcome (i1, …, ik) in samples.

	
est_pmf_from(other, samples, eps=1e-10)

	Estimate PMF from samples of another MPPovm other

If other does not provide information on all elements in
self, we require that the elements in self for which
information is provided sum to a multiple of the identity.

Example: If we consider the MPPovm
MPPovm.from_local_povm(x, n)
for given local POVMs x, it is possible to obtain counts for
the Pauli X part of x = pauli_povm() from samples for x =
x_povm(); this is also true if
the latter is supported on a larger part of the chain.

	Parameters

	
	other (MPPovm) – Another MPPovm

	samples (np.ndarray) – (n_samples, len(other.nsoutdims))
array of samples for other

	Returns

	(est_pmf, n_samples_used). est_pmf: Shape
self.nsoutdims ndarray of normalized probability
estimates; the sum over the available probability
estimates is equal to the fraction of the identity
obtained by summing the corresponding POVM
elements. n_samples_used: Number of samples which have
contributed to the PMF estimate.

	
est_pmf_from_mpps(other, samples, eps=1e-10)

	Estimate probability mass function from MPPovmList samples

	Parameters

	
	other (MPPovmList) – An MPPovmList instance

	samples – Iterable of samples (e.g. from
MPPovmList.samples())

	Returns

	(p_est, n_samples_used), both are shape
self.nsoutdims ndarrays. p_est provides estimated
probabilities and n_samples_used provides the effective
number of samples used for each probability.

	
expectations(mpa, mode='auto')

	Computes the exp. values of the POVM elements with given state

	Parameters

	
	mpa – State given as MPDO, MPS, or PMPS

	mode – In which form mpa is given. Possible values: ‘mpdo’,
‘pmps’, ‘mps’, or ‘auto’. If ‘auto’ is passed, we choose between
‘mps’ or ‘mpdo’ depending on the number of physical legs

	Returns

	Iterator over the expectation values, the n-th element is
the expectation value correponding to the reduced state on sites
[n,…,n + len(self) - 1]

	
classmethod eye(local_dims)

	Construct MP-POVM with no output or measurement

Corresponds to taking the partial trace of the quantum state
and a shorter MP-POVM.

	Parameters

	local_dims – Iterable of local dimensions

	
classmethod from_local_povm(lelems, width)

	Generates a product POVM on width sites.

	Parameters

	
	lelems – POVM elements as an iterator over all local elements
(i.e. an iterator over numpy arrays representing the latter)

	width (int) – Number of sites the POVM lives on

	Returns

	MPPovm which is a product POVM of the lelems

	
hdims

	Local Hilbert space dimensions

	
lfun(coeff, funs, state, mode='auto', eps=1e-10)

	Evaluate a linear combination of functions of POVM outcomes

	Parameters

	
	coeff (np.ndarray) – A length n_funs array with the
coefficients of the linear combination. If None, return
the estimated values of the individual functions and the
estimated covariance matrix of the estimates.

	funs (np.ndarray) – A length n_funs sequence of
functions. If None, the estimated function will be a
linear function of the POVM probabilities.

For further information, see also Linear combinations of functions of POVM outcomes.

The parameters state and mode are passed to
MPPovm.pmf().

	Returns

	(value, var): Expectation value and variance of
the expectation value

	
match_elems(other, exclude_dup=(), eps=1e-10)

	Find POVM elements in other which have information on self

We find all POVM sites in self which have only one possible
outcome. We discard these outputs in other and afterwards
check other and self for any common POVM elements.

	Parameters

	
	other – Another MPPovm

	exclude_dup – Sequence which can include ‘self’
or ‘other’ (or both) to assert that there are no
linearly dependent pairs of elements in self or other.

	eps – Threshould for values which should be treated as zero

	Returns

	(matches, prefactors)

matches[i_1, …, i_k, j_1, …, j_k] specifies whether
outcome (i_1, …, i_k) of self has the same POVM element
as the partial outcome (j_1, …, j_k) of other; outcomes
are specified only on the sites mentioned in sites such that
k = len(sites).

prefactors[i_1, …, i_k, j_1, …, j_k] specifies how samples
from other have to be weighted to correspond to samples for
self.

	
nsoutdims

	Non-singleton outcome dimensions (dimension larger one)

	
nsoutpos

	Sites with non-singleton outcome dimension (dimension larger one)

	
outdims

	Outcome dimensions

	
pack_samples(samples, dtype=None)

	Pack samples into one integer per sample

Store one sample in a single integer instead of a list of
integers with length len(self.nsoutdims). Example:

>>> p = pauli_mpp(nr_sites=2, local_dim=2)
>>> p.outdims
(6, 6)
>>> p.pack_samples(np.array([[0, 1], [1, 0], [1, 2], [5, 5]]))
array([1, 6, 8, 35])

	
pmf(state, mode='auto')

	Compute the POVM’s probability mass function for state

If you want to compute the probabilities for reduced states of
state, you can use MPPovm.expectations() instead of
this function.

	Parameters

	
	state (mp.MPArray) – A quantum state as MPA. Must have the
same length as self.

	mode – ‘mps’, ‘mpdo’ or ‘pmps’. See
MPPovm.expectations().

	Returns

	Probabilities as MPArray

	
pmf_as_array(state, mode='auto', eps=1e-10, impl='auto')

	Compute the POVM’s PMF for state as full array

Parameters: See MPPovm.pmf().

	Parameters

	impl – ‘auto’, ‘default’, ‘pmps-symm’ or
‘pmps-ltr’. ‘auto’ will use ‘pmps-symm’ for mode
‘pmps’ and ‘default’ otherwise.

	Returns

	PMF as shape self.nsoutdims ndarray

The resulting (real or complex) probabilities pmf are passed
through project_pmf(pmf, eps, eps) before being returned.

	
pmfs_as_array(states, mode, asarray=False, eps=1e-10)

	
Todo

Add docstring

	
probability_map

	Map that takes a raveled MPDO to the POVM probabilities

You can use MPPovm.expectations() or
MPPovm.pmf() as convenient wrappers around this map.

If rho is a matrix product density operator (MPDO), then

produces the POVM probabilities as MPA (similar to
mpnum.povm.localpovm.POVM.probability_map()).

	
repeat(nr_sites)

	Construct a longer MP-POVM by repetition

The resulting POVM will have length nr_sites. If nr_sites
is not an integer multiple of len(self), self must
factorize (have leg dimension one) at the position where it
will be cut. For example, consider the tensor product MP-POVM
of Pauli X and Pauli Y. Calling repeat(nr_sites=5) will
construct the tensor product POVM XYXYX:

>>> import mpnum as mp
>>> import mpnum.povm as mpp
>>> x, y = (mpp.MPPovm.from_local_povm(lp(3), 1) for lp in
... (mpp.x_povm, mpp.y_povm))
>>> xy = mp.chain([x, y])
>>> xyxyx = mp.chain([x, y, x, y, x])
>>> mp.norm(xyxyx - xy.repeat(5)) <= 1e-10
True

	
sample(rng, state, n_samples, method='cond', n_group=1, mode='auto', pack=False, eps=1e-10)

	Random sample from self on a quantum state

	Parameters

	
	state (mp.MPArray) – A quantum state as MPA (see mode)

	n_samples – Number of samples to create

	method – Sampling method (‘cond’ or ‘direct’, see below)

	n_group – Number of sites to sample at a time in
conditional sampling.

	mode – Passed to MPPovm.expectations()

	eps – Threshold for small values to be treated as zero.

Two different sampling methods are available:

	Direct sampling (method=’direct’): Compute probabilities
for all outcomes and sample from the full probability
distribution. Usually faster than conditional sampling for
measurements on a small number of sites. Requires memory
linear in the number of possible outcomes.

	Conditional sampling (method=’cond’): Sample outcomes on
all sites by sampling from conditional outcome probabilities
on at most n_group sites at a time. Requires memory linear
in the number of outcomes on n_group sites. Useful for
measurements which act on large parts of a system
(e.g. Pauli X on each spin).

	Returns

	ndarray samples with shape (n_samples,
len(self.nsoutdims))

The i-th sample is given by samples[i, :]. samples[i, j]
is the outcome for the j-th non-singleton output dimension
of self.

	
unpack_samples(samples)

	Unpack samples into several integers per sample

Inverse of MPPovm.pack_samples(). Example:

>>> p = pauli_mpp(nr_sites=2, local_dim=2)
>>> p.outdims
(6, 6)
>>> p.unpack_samples(np.array([0, 6, 7, 12]))
array([[0, 0],
 [1, 0],
 [1, 1],
 [2, 0]], dtype=uint8)

	
class mpnum.povm.mppovm.MPPovmList(mppseq)

	Bases: object

A list of Matrix Product POVMs

This class allows you to

	Conveniently obtain samples and estimated or exact probabilities
for a list of MPPovms

	Estimate probabilities from samples for a different MPPovmList

	Estimate linear functions of probabilities of an MPPovmList from
samples for a different MPPovmList

	
__init__(mppseq)

	Construct a MPPovmList

	Parameters

	mppseq – An iterable of MPPovm objects

All MPPovms must have the same number of sites.

	
block(nr_sites)

	Embed MP-POVMs on local blocks

This function calls MPPovm.block(nr_sites)() for each
MP-POVM in the list. Embedded MP-POVMs at the same position
appear consecutively in the returned list:

>>> import mpnum as mp
>>> import mpnum.povm as mpp
>>> ldim = 3
>>> x, y = (mpp.MPPovm.from_local_povm(lp(ldim), 1) for lp in
... (mpp.x_povm, mpp.y_povm))
>>> e = mpp.MPPovm.eye([ldim])
>>> xx = mp.chain([x, x])
>>> xy = mp.chain([x, y])
>>> mppl = mpp.MPPovmList((xx, xy))
>>> xxe = mp.chain([x, x, e])
>>> xye = mp.chain([x, y, e])
>>> exx = mp.chain([e, x, x])
>>> exy = mp.chain([e, x, y])
>>> expect = (xxe, xye, exx, exy)
>>> [abs(mp.norm(a - b)) <= 1e-10
... for a, b in zip(mppl.block(3).mpps, expect)]
[True, True, True, True]

	
block_pmfs_as_array(state, mode, asarray=False, eps=1e-10, **redarg)

	
Todo

Add docstring

	
est_lfun(coeff, funs, samples, weights=None, eps=1e-10)

	Estimate a linear combination of functions of POVM outcomes

	Parameters

	
	coeff – Iterable of coefficient lists

	funs – Iterable of function lists

	samples – Iterable of samples

	weights – Iterable of weight lists or None

The i-th item from these parameters is passed to
MPPovm.est_lfun() on self.mpps[i].est_lfun.

	Returns

	(est, var): Estimated value est and estimated
variance var of the estimate est

	
est_lfun_from(other, coeff, samples, eps=1e-10)

	Estimate a linear function from samples for another MPPovmList

The function to estimate is a linear function of the
probabilities of self and it is specified by coeff. Its
true expectation value and variance are returned by
MPPovmList.lfun_from(). First, an estimator is
constructed using MPPovmList._lfun_estimator() and this
estimator is passed to MPPovm.est_lfun() to obtain the
estimate. See Linear combinations of functions of POVM outcomes for more details.

	Parameters

	
	other (MPPovmList) – Another MP-POVM list

	coeff – A sequence of shape self.mpps[i].nsoutdims
coefficients which specify the function to estimate

	samples – A sequence of samples for other

	Returns

	(est, var): Estimated value and estimated variance
of the estimated value. Return (np.nan, np.nan) if
other is not sufficient to estimate the function.

	
est_pmf(samples, normalized=True, eps=1e-10)

	Estimate PMF from samples

Returns an iterator over results from MPPovm.est_pmf()
(see there).

	
est_pmf_from(other, samples, eps=1e-10)

	Estimate PMF from samples of another MPPovmList

	Parameters

	
	other (MPPovmList) – A different MPPovmList

	samples – Samples from other

	Returns

	Iterator over (p_est, n_samples_used) from
MPPovm.est_pmf_from_mpps().

	
lfun(coeff, funs, state, mode='auto', eps=1e-10)

	Evaluate a linear combination of functions of POVM outcomes

coeff[i] and funs[i] are passed to MPPovm.lfun() on
self.mpps[i]. funs = None is treated as [None] *
len(self.mpps). state and mode are passed to
MPPovm.pmf().

	Returns

	(value, var): Expectation value and variance of
the expectation value

	
lfun_from(other, coeff, state, mode='auto', other_weights=None, eps=1e-10)

	Evaluate a linear combination of POVM probabilities

This function computes the same expectation value as
MPPovmList.lfun() if supplied with funs = None, but it
computes the variance for a different estimation procedure: It
uses weighted averages of POVM probabilities from other to
obtain the necessary POVM probabilities for self (the same
is done in MPPovmList.est_lfun_from()).

The parameter coeff is explained in
MPPovmList.est_lfun_from(). state and mode are
passed to MPPovm.pmf().

You can supply the array other_weights to determine the
weighted average used when a probability in a POVM in self
can be estimated from probabilities in multiple different
POVMs in other.

	Returns

	(value, var): Expectation value and variance of
the expectation value. Return (np.nan, np.nan) if
other is not sufficient to estimate the function.

	
pack_samples(samples)

	Pack samples into one integer per sample

	Returns

	Iterator over output from MPPovm.pack_samples()

	
pmf(state, mode='auto')

	Compute the probability mass functions of all MP-POVMs

	Parameters

	
	state – A quantum state as MPA

	mode – Passed to MPPovm.expectations()

	Returns

	Iterator over probabilities as MPArrays

	
pmf_as_array(state, mode='auto', eps=1e-10)

	Compute the PMF of all MP-POVMs as full arrays

Parameters: See MPPovmList.pmf(). Sanity checks: See
MPPovm.pmf_as_array().

	Returns

	Iterator over probabilities as ndarrays

	
pmfs_as_array(states, mode, asarray=False, eps=1e-10)

	
Todo

Add docstring

	
repeat(nr_sites)

	Construct longer MP-POVMs by repeating each MP-POVM

This function calls MPPovm.repeat(nr_sites) for each MP-POVM in the list.

For example, pauli_mpps() for local_dim > 3
(i.e. without Z) and two sites returns POVMs for the four
tensor product observables XX, XY, YX and YY:

>>> import mpnum as mp
>>> import mpnum.povm as mpp
>>> block_sites = 2
>>> ldim = 3
>>> x, y = (mpp.MPPovm.from_local_povm(lp(ldim), 1) for lp in
... (mpp.x_povm, mpp.y_povm))
>>> pauli = mpp.pauli_mpps(block_sites, ldim)
>>> expect = (
... mp.chain((x, x)),
... mp.chain((x, y)),
... mp.chain((y, x)),
... mp.chain((y, y)),
...)
>>> [abs(mp.norm(a - b)) <= 1e-10 for a, b in zip(pauli.mpps, expect)]
[True, True, True, True]

Calling repeat(5) then returns the following
MPPovmList:

>>> expect = (
... mp.chain((x, x, x, x, x)),
... mp.chain((x, y, x, y, x)),
... mp.chain((y, x, y, x, y)),
... mp.chain((y, y, y, y, y)),
...)
>>> [abs(mp.norm(a - b)) <= 1e-10
... for a, b in zip(pauli.repeat(5).mpps, expect)]
[True, True, True, True]

	
sample(rng, state, n_samples, method, n_group=1, mode='auto', pack=False, eps=1e-10)

	Random sample from all MP-POVMs on a quantum state

Parameters: See MPPovm.sample().

Return value: Iterable of return values from
MPPovm.sample().

	
unpack_samples(samples)

	Unpack samples into several integers per sample

	Returns

	Iterator over output from MPPovm.unpack_samples()

	
mpnum.povm.mppovm.pauli_mpp(nr_sites, local_dim)

	Pauli POVM tensor product as MP-POVM

The resulting MP-POVM will contain all tensor products of the
elements of the local Pauli POVM from mpp.pauli_povm().

	Parameters

	
	nr_sites (int) – Number of sites of the returned MP-POVM

	local_dim (int) – Local dimension

	Return type

	MPPovm

For example, for two qubits the (1, 3) measurement outcome is
minus X on the first and minus Y on the second qubit:

>>> nr_sites = 2
>>> local_dim = 2
>>> pauli = pauli_mpp(nr_sites, local_dim)
>>> xy = np.kron([1, -1], [1, -1j]) / 2
>>> xyproj = np.outer(xy, xy.conj())
>>> proj = pauli.get([1, 3], astype=mp.MPArray) \
... .to_array_global().reshape((4, 4))
>>> abs(proj - xyproj / 3**nr_sites).max() <= 1e-10
True

The prefactor 1 / 3**nr_sites arises because X, Y and Z are in a
single POVM.

	
mpnum.povm.mppovm.pauli_mpps(nr_sites, local_dim)

	Pauli POVM tensor product as MP-POVM list

The returned MPPovmList contains all tensor products of
the single-site X, Y (and Z if local_dim == 2) POVMs:

>>> import mpnum as mp
>>> import mpnum.povm as mpp
>>> block_sites = 2
>>> ldim = 3
>>> x, y = (mpp.MPPovm.from_local_povm(lp(ldim), 1) for lp in
... (mpp.x_povm, mpp.y_povm))
>>> pauli = mpp.pauli_mpps(block_sites, ldim)
>>> expect = (
... mp.chain((x, x)),
... mp.chain((x, y)),
... mp.chain((y, x)),
... mp.chain((y, y)),
...)
>>> [abs(mp.norm(a - b)) <= 1e-10 for a, b in zip(pauli.mpps, expect)]
[True, True, True, True]

	Parameters

	
	nr_sites (int) – Number of sites of the returned MP-POVMs

	local_dim (int) – Local dimension

	Return type

	MPPovmList

povm.localpovm

An informationally complete d-level POVM.

The POVM simplifies to measuring Paulis matrices in the case of
qubits.

	
class mpnum.povm.localpovm.POVM(elements, info_complete=False, pinv=<function pinv>)

	Bases: object

Represent a Positive Operator-Valued Measure (POVM).

	
classmethod from_vectors(vecs, info_complete=False)

	Generates a POVM consisting of rank 1 projectors based on the
corresponding vectors.

	Parameters

	
	vecs – Iterable of np.ndarray with ndim=1 representing the
vectors for the POVM

	info_complete – Is the POVM informationally complete
(default False)

	Returns

	

	
informationally_complete

	

	
linear_inversion_map

	Map that reconstructs a density matrix with linear inversion.

Linear inversion is performed by taking the Moore–Penrose
pseudoinverse of self.probability_map.

	
probability_map

	Map that takes a raveled density matrix to the POVM probabilities

The following two return the same:

probab = np.array([np.trace(np.dot(elem, rho)) for elem in a_povm])
probab = np.dot(a_povm.probability_map, rho.ravel())

	
mpnum.povm.localpovm.concat(povms, weights, info_complete=False)

	Combines the POVMs given in povms according the weights given to a new
POVM.

	Parameters

	
	povms – Iterable of POVM

	weights – Iterable of real numbers, should sum up to one

	info_complete – Is the resulting POVM informationally complete

	Returns

	POVM

	
mpnum.povm.localpovm.pauli_parts(dim)

	The POVMs used by pauli_povm() as a list

For dim > 3, x_povm() and y_povm() are returned. For
dim = 2, z_povm() is included as well.

	Parameters

	dim – Dimension of the system

	Returns

	Tuple of POVMs

	
mpnum.povm.localpovm.pauli_povm(dim)

	An informationally complete d-level POVM that simplifies to measuring
Pauli matrices in the case d=2.

	Parameters

	dim – Dimension of the system

	Returns

	POVM with (generalized) Pauli measurments

	
mpnum.povm.localpovm.x_povm(dim)

	The X POVM simplifies to measuring Pauli X eigenvectors for dim=2.

	Parameters

	dim – Dimension of the system

	Returns

	POVM with generalized X measurments

	
mpnum.povm.localpovm.y_povm(dim)

	The Y POVM simplifies to measuring Pauli Y eigenvectors for dim=2.

	Parameters

	dim – Dimension of the system

	Returns

	POVM with generalized Y measurments

	
mpnum.povm.localpovm.z_povm(dim)

	The Z POVM simplifies to measuring Pauli Z eigenvectors for dim=2.

	Parameters

	dim – Dimension of the system

	Returns

	POVM with generalized Z measurments

special

Optimized functions

Module contains some specialiced versions of some functions from mparray.
They are tuned for speed with special applications in mind

	
mpnum.special.inner_prod_mps(mpa1, mpa2)

	Same as mparray.inner(), but assumes that mpa1 is a product MPS

	Parameters

	
	mpa1 – MPArray with one leg per site and rank 1

	mpa2 – MPArray with same shape as mpa1 but arbitrary rank

	Returns

	<mpa1|mpa2>

	
mpnum.special.sumup(mpas, rank, weights=None, svdfunc=<function truncated_svd>)

	Same as mparray.sumup() with a consequent compression, but with
in-place svd compression. Also, we use a sparse-matrix format for the
intermediate local tensors of the sum. Therefore, the memory footprint
scales only linearly in the number of summands (instead of quadratically).

Right now, only the sum of product tensors is supported.

	Parameters

	
	mpas – Iterator over MPArrays

	rank – Rank of the final result.

	weights – Iterator of same length as mpas containing weights for
computing weighted sum (default: None)

	svdfunc – Function implementing the truncated svd, for required
signature see truncated_svd().

	Returns

	Sum of mpas with max. rank rank

Possible values for svdfunc include:

	truncated_svd(): Almost no speedup compared to the standard
sumup and compression, since it computes the full SVD

	scipy.sparse.linalg.svds(): Only computes the necessary
singular values/vectors, but slow if rank is not small enough

	mpnum.utils.extmath.randomized_svd(): Randomized truncated
SVD, fast and efficient, but only approximation.

utils

utils.array_transforms

Helper functions for transforming arrays

	
mpnum.utils.array_transforms.global_to_local(array, sites, left_skip=0, right_skip=0)

	Converts a general sites-local array with fixed number p of physical
legs per site from the global form

A[i_1,…, i_N, j_1,…, j_N, …]

(i.e. grouped by physical legs) to the local form

A[i_1, j_1, …, i_2, j_2, …]

(i.e. grouped by site).

	Parameters

	
	array (np.ndarray) – Array with ndim, such that ndim % sites = 0

	sites (int) – Number of distinct sites

	left_skip (int) – Ignore that many axes on the left

	right_skip (int) – Ignore that many axes on the right

	Returns

	Array with same ndim as array, but reshaped

>>> global_to_local(np.zeros((1, 2, 3, 4, 5, 6)), 3).shape
(1, 4, 2, 5, 3, 6)
>>> global_to_local(np.zeros((1, 2, 3, 4, 5, 6)), 2).shape
(1, 3, 5, 2, 4, 6)

	
mpnum.utils.array_transforms.local_to_global(array, sites, left_skip=0, right_skip=0)

	Inverse of local_to_global

	Parameters

	
	array (np.ndarray) – Array with ndim, such that ndim % sites = 0

	sites (int) – Number of distinct sites

	left_skip (int) – Ignore that many axes on the left

	right_skip (int) – Ignore that many axes on the right

	Returns

	Array with same ndim as array, but reshaped

>>> ltg, gtl = local_to_global, global_to_local
>>> ltg(gtl(np.zeros((1, 2, 3, 4, 5, 6)), 3), 3).shape
(1, 2, 3, 4, 5, 6)
>>> ltg(gtl(np.zeros((1, 2, 3, 4, 5, 6)), 2), 2).shape
(1, 2, 3, 4, 5, 6)

Transform all or only the inner axes:

>>> ltg = local_to_global
>>> ltg(np.zeros((1, 2, 3, 4, 5, 6)), 3).shape
(1, 3, 5, 2, 4, 6)
>>> ltg(np.zeros((1, 2, 3, 4, 5, 6)), 2, left_skip=1, right_skip=1).shape
(1, 2, 4, 3, 5, 6)

utils.extmath

Additional math functions for dealing with dense arrays

	
mpnum.utils.extmath.block_diag(summands, axes=(0, 1))

	Block-diagonal sum for n-dimensional arrays.

Perform something like a block diagonal sum (if len(axes) == 2)
along the specified axes. All other axes must have identical
sizes.

	Parameters

	axes – Along these axes, perform a block-diagonal sum. Can
be negative.

>>> a = np.arange(8).reshape((2, 2, 2))
>>> b = np.arange(8, 16).reshape((2, 2, 2))
>>> a
array([[[0, 1],
 [2, 3]],

 [[4, 5],
 [6, 7]]])
>>> b
array([[[8, 9],
 [10, 11]],

 [[12, 13],
 [14, 15]]])
>>> block_diag((a, b), axes=(1, -1))
array([[[0, 1, 0, 0],
 [2, 3, 0, 0],
 [0, 0, 8, 9],
 [0, 0, 10, 11]],

 [[4, 5, 0, 0],
 [6, 7, 0, 0],
 [0, 0, 12, 13],
 [0, 0, 14, 15]]])

	
mpnum.utils.extmath.matdot(A, B, axes=((-1,), (0,)))

	np.tensordot with sane defaults for matrix multiplication

	
mpnum.utils.extmath.mkron(*args)

	np.kron() with an arbitrary number of n >= 1 arguments

	
mpnum.utils.extmath.partial_trace(array, traceout)

	Return the partial trace of an array over the sites given in traceout.

	Parameters

	
	array (np.ndarray) – Array in global form (see global_to_local()
above) with exactly 2 legs per site

	traceout – List of sites to trace out, must be in _ascending_ order

	Returns

	Partial trace over input array

	
mpnum.utils.extmath.truncated_svd(A, k)

	Compute the truncated SVD of the matrix A i.e. the k largest
singular values as well as the corresponding singular vectors. It might
return less singular values/vectors, if one dimension of A is smaller
than k.

In the background it performs a full SVD. Therefore, it might be
inefficient when k is much smaller than the dimensions of A.

	Parameters

	
	A – A real or complex matrix

	k – Number of singular values/vectors to compute

	Returns

	u, s, v, where
u: left-singular vectors
s: singular values in descending order
v: right-singular vectors

	
mpnum.utils.extmath.randomized_svd(M, n_components, n_oversamples=10, n_iter='auto', piter_normalizer='auto', transpose='auto', randstate=<module 'numpy.random' from '/usr/lib/python3/dist-packages/numpy/random/__init__.py'>)

	Computes a truncated randomized SVD. Uses the same convention as
scipy.sparse.linalg.svds(). However, we guarantee to return the
singular values in descending order.

	Parameters

	
	M – The input data matrix, can be any type that can be converted
into a scipy.linalg.LinarOperator, e.g. numpy.ndarray,
or a sparse matrix.

	n_components (int) – Number of singular values and vectors to extract.

	n_oversamples (int) – Additional number of random vectors to sample the
range of M so as to ensure proper conditioning. The total number of
random vectors used to find the range of M is n_components +
n_oversamples. Smaller number can improve speed but can negatively
impact the quality of approximation of singular vectors and singular
values. (default 10)

	n_iter – Number of power iterations. It can be used to deal with very
noisy problems. When 'auto', it is set to 4, unless
n_components is small (< .1 * min(X.shape)). Then,
n_iter is set to 7. This improves precision with few
components. (default 'auto')

	piter_normalizer (str) – 'auto' (default), 'QR', 'LU',
'none'. Whether the power iterations are normalized with
step-by-step QR factorization (the slowest but most accurate),
'none' (the fastest but numerically unstable when n_iter is
large, e.g. typically 5 or larger), or 'LU' factorization
(numerically stable but can lose slightly in accuracy). The ‘auto’ mode
applies no normalization if n_iter <= 2 and switches to LU
otherwise.

	transpose – True, False or 'auto'
Whether the algorithm should be applied to M.T instead of M.
The result should approximately be the same. The 'auto' mode will
trigger the transposition if M.shape[1] > M.shape[0] since then
the computational overhead in the randomized SVD is generally smaller.
(default 'auto').

	randstate – An instance of numpy.random.RandomState (default is
np.random))

Notes

This algorithm finds a (usually very good) approximate truncated
singular value decomposition using randomization to speed up the
computations. It is particularly fast on large matrices on which
you wish to extract only a small number of components. In order to
obtain further speed up, n_iter can be set <=2 (at the cost of
loss of precision).

References

	Finding structure with randomness: Stochastic algorithms for constructing
approximate matrix decompositions
Halko, et al., 2009 http://arxiv.org/abs/arXiv:0909.4061

	A randomized algorithm for the decomposition of matrices
Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert

	An implementation of a randomized algorithm for principal component
analysis
A. Szlam et al. 2014

utils.physics

Code related to physical models

Contents:

	Hamiltonian and analytic ground state energy of the cyclic XY model

References:

	LSM61

	Lieb, Schultz and Mattis (1961). Two soluble models of an
antiferromagnetic chain.

	
mpnum.utils.physics.cXY_E0(nr_sites, gamma)

	Ground state energy of the cyclic XY model

	Parameters

	
	nr_sites – Number of spin one-half sites

	gamma – Asymmetry parameter

	Returns

	Exact energy of the ground state

This function is implemented for nr_sites which is an odd
multiple of two. In this case, the ground state energy of the XY
model is given by (Eqs. (A-12), (2.20) of [LSM61])

\[E_0 = -\frac12 \sum_{l=0}^{N-1} \Lambda_{k(l)}\]

with (Eqs. (2.18b), (2.18c))

\[\Lambda_k^2 = 1 - (1 - \gamma^2) [\sin(k)]^2, \quad
k(l) = \frac{2\pi}{N} \left(l - \frac N2 \right)\]

and \(\Lambda_k \ge 0\).

	
mpnum.utils.physics.cXY_local_terms(nr_sites, gamma)

	Local terms of the cyclic XY model (MPOs)

	Parameters

	
	nr_sites – Number of spin one-half sites

	gamma – Asymmetry parameter

	Returns

	List terms of length nr_sites (MPOs)

The term terms[i] acts on spins (i, i + 1) and
spin nr_sites is the same as the first spin.

The Hamiltonian of the cyclic XY model is given by
[LSM61, Eq. 2.1]:

\[H_\gamma = \sum_{i=1}^{N} (1+\gamma) S^x_i S^x_{i+1}
 + (1-\gamma) S^y_i S^y_{i+1}\]

with \(S^j_{N+1} = S^j_{1}\). The function cXY_E0()
returns the exact ground state energy of this Hamiltonian.

	
mpnum.utils.physics.mpo_cH(terms)

	Construct an MPO cyclic nearest-neighbour Hamiltonian

	Parameters

	terms – List of nearst-neighbour terms (MPOs, see return
value of cXY_local_terms())

	Returns

	The Hamiltonian as MPO

Note

It may not be advisable to call
mp.MPArray.canonicalize() on a Hamiltonian, e.g.:

>>> mpoH = mpo_cH(cXY_local_terms(nr_sites=100, gamma=0))
>>> abs1 = max(abs(lt).max() for lt in mpoH.lt)
>>> mpoH.canonicalize()
>>> abs2 = np.round(max(abs(lt).max() for lt in mpoH.lt), -3)
>>> print('{:.3f} {:.2e}'.format(abs1, abs2))
1.000 2.79e+15

The Hamiltonian generally has a large Frobenius norm because
local terms are embedded with identity matrices. This causes
large tensor entries of canonicalization which will eventually
overflow the numerical maximum (the overflow happens somewhere
between 2000 and 3000 sites in this example). One could embed
local terms with Frobenius-normalized identity matrices
instead, but this would make the eigenvalues of H exponentially
(in nr_sites) small. This would eventually cause
numerical underflows.

	
mpnum.utils.physics.sparse_cH(terms, ldim=2)

	Construct a sparse cyclic nearest-neighbour Hamiltonian

	Parameters

	
	terms – List of nearst-neighbour terms (square array or MPO,
see return value of cXY_local_terms())

	ldim – Local dimension

	Returns

	The Hamiltonian as sparse matrix

Todo list (autogenerated)

Todo

single site MPAs – what is left?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring of mpnum.mparray, line 3.)

Todo

Local tensor ownership – see MPArray class comment

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring of mpnum.mparray, line 4.)

Todo

Possible optimization:

	replace integer-for loops with iterator (not obviously possible
everwhere)

	replace internal structure as list of arrays with lazy generator of
arrays (might not be possible, since we often iterate both ways!)

	more in place operations for addition, subtraction, multiplication

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring of mpnum.mparray, line 5.)

Todo

Replace all occurences of self._ltens with self[…] or similar &
benchmark. This will allow easier transition to lazy evaluation of
local tensors

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring of mpnum.mparray, line 12.)

Todo

As it is now, e.g. __imul__() modifies
items from self._ltens. This requires
e.g. chain() to take copies of the local
tensors. The data model seems to be that an MPArray
instance owns its local tensors and everyone else,
including each new MPArray instance, must take
copies. Is this correct?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring of mpnum.mparray.MPArray, line 18.)

Todo

More appropriate naming for this functions?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring of mpnum.mparray.MPArray.leg2vleg, line 6.)

Todo

Why is this here? What’s wrong with the purne function?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring of mpnum.mparray.MPArray.reshape, line 10.)

Todo

More appropriate naming for this functions?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring of mpnum.mparray.MPArray.vleg2leg, line 11.)

Todo

Make this canonicalization aware

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring of mpnum.mparray.chain, line 10.)

Todo

Raise warning when casting complex to real dtype

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring of mpnum.mparray.chain, line 11.)

Todo

This table needs cell borders in the HTML output (->
CSS) and the tabularcolumns command doesn’t work.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mparray.py:docstring of mpnum.mparray.regular_slices, line 24.)

Todo

Are derived classes MPO/MPS/PMPS of any help?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mpsmpo.py:docstring of mpnum.mpsmpo, line 99.)

Todo

I am not sure the current definition of PMPS is the most elegant
for our purposes…

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mpsmpo.py:docstring of mpnum.mpsmpo, line 101.)

Todo

Add docstring

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/mpsmpo.py:docstring of mpnum.mpsmpo.reductions, line 1.)

Todo

Add information on how the runtime of eig() and
eig_sum() scale with the the different ranks. For
the time being, refer to the benchmark test.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/linalg.py:docstring of mpnum.linalg.eig_sum, line 13.)

Todo

Explain the details of the variance estimation, in particular the
difference between the variances returned from
MPPovmList.lfun() and MPPovmList.lfun_from(). Check the
mean square error.

Add a good references explaining all facts mentioned above and for
further reading.

Document the runtime and memory cost of the functions.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/povm/mppovm.py:docstring of mpnum.povm.mppovm, line 116.)

Todo

This class should provide a function which returns
expectation values as full array. (Even though computing
expectation values using the POVM struture brings advantages,
we usually need the result as full array.) This function
should also replace small negative probabilities by zero and
canonicalize the sum of all probabilities to unity (if the
deviation is non-zero but small). The same checks should also
be implemented in localpovm.POVM.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/povm/mppovm.py:docstring of mpnum.povm.mppovm.MPPovm, line 19.)

Todo

Right now we use this class for multi-site POVMs with
elements obtained from every possible combination of the
elements of single-site POVMs: The POVM index is split across
all sites. Explore whether and how this concept can also be
useful in other cases.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/povm/mppovm.py:docstring of mpnum.povm.mppovm.MPPovm, line 28.)

Todo

Add docstring

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/povm/mppovm.py:docstring of mpnum.povm.mppovm.MPPovm.block_pmfs_as_array, line 1.)

Todo

Add docstring

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/povm/mppovm.py:docstring of mpnum.povm.mppovm.MPPovm.pmfs_as_array, line 1.)

Todo

Add docstring

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/povm/mppovm.py:docstring of mpnum.povm.mppovm.MPPovmList.block_pmfs_as_array, line 1.)

Todo

Add docstring

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/mpnum/povm/mppovm.py:docstring of mpnum.povm.mppovm.MPPovmList.pmfs_as_array, line 1.)

Todo

Reference to Schollwoeck not working anymore.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/mpnum/checkouts/latest/docs/mpnum.rst, line 118.)

Todo

Reference to Schollwoeck not working anymore.

Note

make livehtml (based on sphinx-autobuild [https://github.com/GaretJax/sphinx-autobuild]) does not rebuild
this list.

Introductory Notebook to mpnum

mpnum implements matrix product arrays (MPA), which are efficient
parameterizations of certain multi-partite arrays. Special cases of the
MPA structure, which are omnipresent in many-body quantum physics, are
matrix product states (MPS) and matrix product operators (MPO) with
one and two array indices per site, respectively. In the applied math
community, matrix product states are also known as tensor trains (TT).

The main class implementing an MPA with arbitrary number of array
indices (or “physical legs”) is mpnum.MPArray.

In [1]:

import numpy as np
import numpy.linalg as la

import mpnum as mp

MPA and MPS basics

A convenient example to deal with is a random MPA. First, we create a
fixed seed, then a random MPA:

In [2]:

rng = np.random.RandomState(seed=42)
mpa = mp.random_mpa(sites=4, ldim=2, rank=3, randstate=rng, normalized=True)

The MPA is an instance of the MPArray class:

In [3]:

mpa

Out[3]:

<mpnum.mparray.MPArray at 0x7f65672eaa90>

Number of sites:

In [4]:

len(mpa)

Out[4]:

4

Number of physical legs at each site (=number of array indices at each
site):

In [5]:

mpa.ndims

Out[5]:

(1, 1, 1, 1)

Because the MPA has one physical leg per site, we have created a matrix
product state (i.e. a tensor train). In the graphical
notation [http://mpnum.readthedocs.io/en/latest/intro.html#graphical-notation],
this MPS looks like this

[image:]

Note that mpnum internally stores the local tensors of the matrix
product representation on the right hand side. We see below how to
obtain the “dense” tensor from an MPArray. Dimension of each
physical leg:

In [6]:

mpa.shape

Out[6]:

((2,), (2,), (2,), (2,))

Note that the number and dimension of the physical legs at each site can
differ (altough this is rarely used in practice).

Representation ranks (aka compression ranks) between each pair of sites:

In [7]:

mpa.ranks

Out[7]:

(2, 3, 2)

In physics, the representation ranks are usually called the bond
dimensions of the representation.

Dummy bonds before and after the chain are omitted in mpa.ranks.
(Currently, mpnum only implements open boundary conditions.)

Above, we have specified normalized=True. Therefore, we have created
an MPA with \(\ell_2\)-norm 1. In case the MPA does not represent a
vector but has more physical legs, it is nonetheless treated as a
vector. Hence, for operators mp.norm implements the Frobenius norm.

In [8]:

mp.norm(mpa)

Out[8]:

1.0000000000000002

Convert to a dense array, which should be used with care due because the
memory used increases exponentially with the number of sites:

In [9]:

arr = mpa.to_array()
arr.shape

Out[9]:

(2, 2, 2, 2)

The resulting full array has one index for each physical leg.

Now convert the full array back to an MPA:

In [10]:

mpa2 = mp.MPArray.from_array(arr)
len(mpa2)

Out[10]:

1

We have obtained an MPA with length 1. This is not what we expected. The
reason is that by default, all legs are placed on a single site (also
notice the difference between mpa2.shape here and mpa.shape from
above):

In [11]:

mpa2.shape

Out[11]:

((2, 2, 2, 2),)

In [12]:

mpa.shape

Out[12]:

((2,), (2,), (2,), (2,))

We obtain the desired result by specifying the number of legs per site
we want:

In [13]:

mpa2 = mp.MPArray.from_array(arr, ndims=1)
len(mpa2)

Out[13]:

4

Finally, we can compute the norm distance between the two MPAs. (Again,
the Frobenius norm is used.)

In [14]:

mp.norm(mpa - mpa2)

Out[14]:

7.2998268912398721e-16

Since this is an often used operation and allows for additional
optimization (not implemented currently), it is advisable to use the
specific mp.normdist for this:

In [15]:

mp.normdist(mpa, mpa2)

Out[15]:

7.2998268912398721e-16

Sums, differences and scalar multiplication of MPAs is done with the
normal operators:

In [16]:

mp.norm(3 * mpa)

Out[16]:

3.0000000000000009

In [17]:

mp.norm(mpa + 0.5 * mpa)

Out[17]:

1.5000000000000011

In [18]:

mp.norm(mpa - 1.5 * mpa)

Out[18]:

0.50000000000000133

Multiplication with a scalar leaves the bond dimension unchanged:

In [19]:

mpa.ranks

Out[19]:

(2, 3, 2)

In [20]:

(3 * mpa).ranks

Out[20]:

(2, 3, 2)

The bond dimensions of a sum (or difference) are given by the sums of
the bond dimensions:

In [21]:

mpa2 = mp.random_mpa(sites=4, ldim=2, rank=2, randstate=rng)
mpa2.ranks

Out[21]:

(2, 2, 2)

In [22]:

(mpa + mpa2).ranks

Out[22]:

(4, 5, 4)

MPO basics

First, we create a random MPA with two physical legs per site:

In [23]:

mpo = mp.random_mpa(sites=4, ldim=(3, 2), rank=3, randstate=rng, normalized=True)

In graphical notation, mpo looks like this

[image:]

It’s basic properties are:

In [24]:

[len(mpo), mpo.ndims, mpo.ranks]

Out[24]:

[4, (2, 2, 2, 2), (3, 3, 3)]

Each site has two physical legs, one with dimension 3 and one with
dimension 2. This corresponds to a non-square full array.

In [25]:

mpo.shape

Out[25]:

((3, 2), (3, 2), (3, 2), (3, 2))

Now convert the mpo to a full array:

In [26]:

mpo_arr = mpo.to_array()
mpo_arr.shape

Out[26]:

(3, 2, 3, 2, 3, 2, 3, 2)

We refer to this arangement of axes as local form, since indices which
correspond to the same site are neighboring. This is a natural form for
the MPO representation. However, for some operations it is necessary to
have row and column indices grouped together – we refer to this as
global form:

In [27]:

from mpnum.utils.array_transforms import local_to_global

mpo_arr = mpo.to_array()
mpo_arr = local_to_global(mpo_arr, sites=len(mpo))
mpo_arr.shape

Out[27]:

(3, 3, 3, 3, 2, 2, 2, 2)

This gives the expected result. Note that it is crucial to specify the
correct number of sites, otherwise we do not get what we want:

In [28]:

mpo_arr = mpo.to_array()
mpo_arr = local_to_global(mpo_arr, sites=2)
mpo_arr.shape

Out[28]:

(3, 3, 2, 2, 3, 3, 2, 2)

As an alternative, there is the following shorthand:

In [29]:

mpo_arr = mpo.to_array_global()
mpo_arr.shape

Out[29]:

(3, 3, 3, 3, 2, 2, 2, 2)

An array in global form can be converted into matrix-product form with
the following API:

In [30]:

mpo2 = mp.MPArray.from_array_global(mpo_arr, ndims=2)
mp.normdist(mpo, mpo2)

Out[30]:

1.0881840590136613e-15

MPO-MPS product and arbitrary MPA-MPA products

We can now compute the matrix-vector product of mpa from above
(which is an MPS) and mpo.

In [31]:

mpa.shape

Out[31]:

((2,), (2,), (2,), (2,))

In [32]:

mpo.shape

Out[32]:

((3, 2), (3, 2), (3, 2), (3, 2))

In [33]:

prod = mp.dot(mpo, mpa, axes=(-1, 0))
prod.shape

Out[33]:

((3,), (3,), (3,), (3,))

The result is a new MPS, with local dimension changed by mpo and
looks like this:

[image:]

The axes argument is optional and defaults to axes=(-1, 0) –
i.e. contracting, at each site, the last pyhsical index of the first
factor with the first physical index of the second factor. More
specifically, the axes argument specifies which physical legs
should be contracted: axes[0] specifies the physical in the first
argument, and axes[1] specifies the physical leg in the second
argument. This means that the same product can be achieved with

In [34]:

prod2 = mp.dot(mpa, mpo, axes=(0, 1))
mp.normdist(prod, prod2)

Out[34]:

1.7794893594008944e-16

Note that in any case, the ranks of the output of mp.dot are the
products of the original ranks:

In [35]:

mpo.ranks, mpa.ranks, prod.ranks

Out[35]:

((3, 3, 3), (2, 3, 2), (6, 9, 6))

Now we compute the same product using the full arrays arr and
mpo_arr:

In [36]:

arr_vec = arr.ravel()
mpo_arr = mpo.to_array_global()
mpo_arr_matrix = mpo_arr.reshape((81, 16))
prod3_vec = np.dot(mpo_arr_matrix, arr_vec)
prod3_vec.shape

Out[36]:

(81,)

As you can see, we need to reshape the result prod3_vec before we
can convert it back to an MPA:

In [37]:

prod3_arr = prod3_vec.reshape((3, 3, 3, 3))
prod3 = mp.MPArray.from_array(prod3_arr, ndims=1)
prod3.shape

Out[37]:

((3,), (3,), (3,), (3,))

Now we can compare the two results:

In [38]:

mp.normdist(prod, prod3)

Out[38]:

2.0433926816958574e-16

We can also compare by converting prod to a full array:

In [39]:

prod_arr = prod.to_array()
la.norm((prod3_arr - prod_arr).reshape(81))

Out[39]:

1.0434960119970279e-16

Converting full operators to MPOs

While MPO algorithms avoid using full operators in general, we will need
to convert a term acting on only two sites to an MPO in order to
continue with MPO operations; i.e. we will need to convert a full array
to an MPO.

First, we define a full operator:

In [40]:

CZ = np.array([[1., 0., 0., 0.],
 [0., 1., 0., 0.],
 [0., 0., 1., 0.],
 [0., 0., 0., -1.]])

This operator is the so-called controlled Z gate: Apply Z on the
second qubit if the first qubit is in state e2.

To convert it to an MPO, we have to reshape:

In [41]:

CZ_arr = CZ.reshape((2, 2, 2, 2))

Now we can create an MPO, being careful to specify the correct number of
legs per site:

In [42]:

CZ_mpo = mp.MPArray.from_array_global(CZ_arr, ndims=2)

To test it, we apply the operator to the state which has both qubits in
state e2:

In [43]:

vec = np.kron([0, 1], [0, 1])
vec

Out[43]:

array([0, 0, 0, 1])

Reshape and convert to an MPS:

In [44]:

vec_arr = vec.reshape([2, 2])
mps = mp.MPArray.from_array(vec_arr, ndims=1)

Now we can compute the matrix-vector product:

In [45]:

out = mp.dot(CZ_mpo, mps)
out.to_array().ravel()

Out[45]:

array([0., 0., 0., -1.])

The output is as expected: We have acquired a minus sign.

We have to be careful to use from_array_global and not
from_array for CZ_mpo, because the CZ_arr is in global
form. Here, all physical legs have the same dimension, so we can use
from_array without error:

In [46]:

CZ_mpo2 = mp.MPArray.from_array(CZ_arr, ndims=2)

However, the result is not what we want:

In [47]:

out2 = mp.dot(CZ_mpo2, mps)
out2.to_array().ravel()

Out[47]:

array([1., 0., 0., -1.])

The reason is easy to see: We have applied the following matrix to our
state:

In [48]:

CZ_mpo2.to_array_global().reshape(4, 4)

Out[48]:

array([[1., 0., 0., 1.],
 [0., 0., 0., 0.],
 [0., 0., 0., 0.],
 [1., 0., 0., -1.]])

Keep in mind that we have to use to_array_global before the reshape.
Using to_array would not provide us the matrix which we have applied
to the state with mp.dot. Instead, it will exactly return the input:

In [49]:

CZ_mpo2.to_array().reshape(4, 4)

Out[49]:

array([[1., 0., 0., 0.],
 [0., 1., 0., 0.],
 [0., 0., 1., 0.],
 [0., 0., 0., -1.]])

Again, from_array_global is just the shorthand for the following:

In [50]:

from mpnum.utils.array_transforms import global_to_local

CZ_mpo3 = mp.MPArray.from_array(global_to_local(CZ_arr, sites=2), ndims=2)

mp.normdist(CZ_mpo, CZ_mpo3)

Out[50]:

1.5700924586837752e-16

As you can see, in the explicit version you must submit both the correct
number of sites and the correct number of physical legs per site.
Therefore, the function MPArray.from_array_global simplifies the
conversion.

Creating MPAs from Kronecker products

It is a frequent task to create an MPS which represents the product
state of \(\vert 0 \rangle\) on each qubit. If the chain is very
long, we cannot create the full array with np.kron and use
MPArray.from_array afterwards because the array would be too large.

In the following, we describe how to efficiently construct an MPA
representation of a Kronecker product of vectors. The same methods can
be used to efficiently construct MPA representations of Kronecker
products of operators or tensors with three or more indices.

First, we need the state on a single site:

In [51]:

e1 = np.array([1, 0])
e1

Out[51]:

array([1, 0])

Then we can use from_kron to directly create an MPS representation
of the Kronecker product:

In [52]:

mps = mp.MPArray.from_kron([e1, e1, e1])
mps.to_array().ravel()

Out[52]:

array([1, 0, 0, 0, 0, 0, 0, 0])

This works well for large numbers of sites because the needed memory
scales linearly with the number of sites:

In [53]:

mps = mp.MPArray.from_kron([e1] * 2000)
len(mps)

Out[53]:

2000

An even more pythonic solution is the use of iterators in this example:

In [54]:

from itertools import repeat

mps = mp.MPArray.from_kron(repeat(e1, 2000))
len(mps)

Out[54]:

2000

Do not call .to_array() on this state!

The bond dimension of the state is 1, because it is a product state:

In [55]:

np.array(mps.ranks) # Convert to an array for nicer display

Out[55]:

array([1, 1, 1, ..., 1, 1, 1])

We can also create a single-site MPS:

In [56]:

mps1 = mp.MPArray.from_array(e1, ndims=1)
len(mps1)

Out[56]:

1

After that, we can use mp.chain to create Kronecker products of the
MPS directly:

In [57]:

mps = mp.chain([mps1, mps1, mps1])
len(mps)

Out[57]:

3

It returns the same result as before:

In [58]:

mps.to_array().ravel()

Out[58]:

array([1, 0, 0, 0, 0, 0, 0, 0])

We can also use mp.chain on the three-site MPS:

In [59]:

mps = mp.chain([mps] * 100)
len(mps)

Out[59]:

300

Note that mp.chain interprets the factors in the tensor product as
distinct sites. Hence, the factors do not need to be of the same length
or even have the same number of indices. In contrast, there is also
mp.localouter, which computes the tensor product of MPArrays with
the same number of sites:

In [60]:

mps = mp.chain([mps1] * 4)
len(mps), mps.shape,

Out[60]:

(4, ((2,), (2,), (2,), (2,)))

In [61]:

rho = mp.localouter(mps.conj(), mps)
len(rho), rho.shape

Out[61]:

(4, ((2, 2), (2, 2), (2, 2), (2, 2)))

Compression

A typical matrix product based numerical algorithm performs many
additions or multiplications of MPAs. As mentioned above, both
operations increase the rank. If we let the bond dimension grow, the
amount of memory we need grows with the number of operations we perform.
To avoid this problem, we have to find an MPA with a smaller rank which
is a good approximation to the original MPA.

We start by creating an MPO representation of the identity matrix on 6
sites with local dimension 3:

In [62]:

op = mp.eye(sites=6, ldim=3)

In [63]:

op.shape

Out[63]:

((3, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3))

As it is a tensor product operator, it has rank 1:

In [64]:

op.ranks

Out[64]:

(1, 1, 1, 1, 1)

However, addition increases the rank:

In [65]:

op2 = op + op + op
op2.ranks

Out[65]:

(3, 3, 3, 3, 3)

Matrix multiplication multiplies the individual ranks:

In [66]:

op3 = mp.dot(op2, op2)
op3.ranks

Out[66]:

(9, 9, 9, 9, 9)

(NB: compress or compression below can call canonicalize on
the MPA, which in turn could already reduce the rank to 1 in case the
rank can be compressed without error. Keep that in mind.)

Keep in mind that the operator represented by op3 is still the
identity operator, i.e. a tensor product operator. This means that we
expect to find a good approximation with low rank easily. Finding such
an approximation is called compression and is achieved as follows:

In [67]:

op3 /= mp.norm(op3.copy()) # normalize to make overlap meaningful
copy = op3.copy()
overlap = copy.compress(method='svd', rank=1)
copy.ranks

Out[67]:

(1, 1, 1, 1, 1)

Calling compress on an MPA replaces the MPA in place with a version
with smaller bond dimension. Overlap gives the absolute value of the
(Hilbert-Schmidt) inner product between the original state and the
output:

In [68]:

overlap

Out[68]:

0.99999999999999911

Instead of in-place compression, we can also obtain a compressed copy:

In [69]:

compr, overlap = op3.compression(method='svd', rank=2)
overlap, compr.ranks, op3.ranks

Out[69]:

(0.99999999999999911, (2, 2, 2, 2, 2), (9, 9, 9, 9, 9))

SVD compression can also be told to meet a certain truncation error (see
the documentation of mp.MPArray.compress for details).

In [70]:

compr, overlap = op3.compression(method='svd', relerr=1e-6)
overlap, compr.ranks, op3.ranks

Out[70]:

(0.99999999999999911, (1, 1, 1, 1, 1), (9, 9, 9, 9, 9))

We can also use variational compression instead of SVD compression:

In [71]:

compr, overlap = op3.compression(method='var', rank=2, num_sweeps=10, var_sites=2)
Convert overlap from numpy array with shape () to float for nicer display:
overlap = overlap.flat[0]
complex(overlap), compr.ranks, op3.ranks

Out[71]:

((1+0j), (2, 2, 2, 2, 2), (9, 9, 9, 9, 9))

As a reminder, it is always advisable to check whether the overlap
between the input state and the compression is large enough. In an
involved algorithm, it can be useful to store the compression error at
each invocation of compression.

MPO sum of local terms

A frequent task is to compute the MPO representation of a local
Hamiltonian, i.e. of an operator of the form

\[\begin{align}\begin{aligned}H = \sum_{i=1}^{n-1} h_{i, i+1}\\where :math:`h_{i, i+1}` acts only on sites :math:`i` and\end{aligned}\end{align} \]

\(i + 1\). This means that
\(h_{i, i+1} = \mathbb 1_{i - 1} \otimes h'_{i, i+1} \otimes \mathbb 1_{n - w + 1}\)
where \(\mathbb 1_k\) is the identity matrix on \(k\) sites and
\(w = 2\) is the width of \(h'_{i, i+1}\).

We show how to obtain an MPO representation of such a Hamiltonian. First
of all, we need to define the local terms. For simplicity, we choose
\(h'_{i, i+1} = \sigma_Z \otimes \sigma_Z\) independently of
\(i\).

In [72]:

zeros = np.zeros((2, 2))
zeros

Out[72]:

array([[0., 0.],
 [0., 0.]])

In [73]:

idm = np.eye(2)
idm

Out[73]:

array([[1., 0.],
 [0., 1.]])

In [74]:

Create a float array instead of an int array to avoid problems later
Z = np.diag([1., -1])
Z

Out[74]:

array([[1., 0.],
 [0., -1.]])

In [75]:

h = np.kron(Z, Z)
h

Out[75]:

array([[1., 0., 0., 0.],
 [0., -1., 0., -0.],
 [0., 0., -1., -0.],
 [0., -0., -0., 1.]])

First, we have to convert the local term h to an MPO:

In [76]:

h_arr = h.reshape((2, 2, 2, 2))
h_mpo = mp.MPArray.from_array_global(h_arr, ndims=2)
h_mpo.ranks

Out[76]:

(4,)

h_mpo has rank 4 even though h is a tensor product. This is far from
optimal. We improve things as follows: (We could also compress
h_mpo.)

In [77]:

h_mpo = mp.MPArray.from_kron([Z, Z])
h_mpo.ranks

Out[77]:

(1,)

The most simple way is to implement the formula from above with MPOs:
First we compute the \(h_{i, i+1}\) from the \(h'_{i, i+1}\):

In [78]:

width = 2
sites = 6
local_terms = []

for startpos in range(sites - width + 1):
 left = [mp.MPArray.from_kron([idm] * startpos)] if startpos > 0 else []
 right = [mp.MPArray.from_kron([idm] * (sites - width - startpos))] \
 if sites - width - startpos > 0 else []
 h_at_startpos = mp.chain(left + [h_mpo] + right)
 local_terms.append(h_at_startpos)

local_terms

Out[78]:

[<mpnum.mparray.MPArray at 0x7f6563b08588>,
 <mpnum.mparray.MPArray at 0x7f6563b084e0>,
 <mpnum.mparray.MPArray at 0x7f6563b086a0>,
 <mpnum.mparray.MPArray at 0x7f6563b08710>,
 <mpnum.mparray.MPArray at 0x7f6563b08630>]

Next, we compute the sum of all the local terms and check the bond
dimension of the result:

In [79]:

H = local_terms[0]

for local_term in local_terms[1:]:
 H += local_term

H.ranks

Out[79]:

(5, 5, 5, 5, 5)

The ranks are explained by the ranks of the local terms:

In [80]:

[local_term.ranks for local_term in local_terms]

Out[80]:

[(1, 1, 1, 1, 1),
 (1, 1, 1, 1, 1),
 (1, 1, 1, 1, 1),
 (1, 1, 1, 1, 1),
 (1, 1, 1, 1, 1)]

We just have to add the ranks at each position.

mpnum provides a function which constructs H from h_mpo,
with an output MPO with smaller rank by taking into account the trivial
action on some sites:

In [81]:

H2 = mp.local_sum([h_mpo] * (sites - width + 1))
H2.ranks

Out[81]:

(2, 3, 3, 3, 2)

Without additional arguments, mp.local_sum() just adds the local
terms with the first term starting on site 0, the second on site 1 and
so on. In addition, the length of the chain is chosen such that the last
site of the chain coincides with the last site of the last local term.
Other constructions can be obtained by prodividing additional arguments.

We can check that the two Hamiltonians are equal:

In [82]:

mp.normdist(H, H2)

Out[82]:

6.4354640488548389e-15

Of course, this means that we could just compress H:

In [83]:

H_comp, overlap = H.compression(method='svd', rank=3)
overlap / mp.norm(H)**2

Out[83]:

0.99999999999999889

In [84]:

H_comp.ranks

Out[84]:

(3, 3, 3, 3, 3)

We can also check the minimal bond dimension which can be achieved with
SVD compression with small error:

In [85]:

H_comp, overlap = H.compression(method='svd', relerr=1e-6)
overlap / mp.norm(H)**2

Out[85]:

0.99999999999999933

In [86]:

H_comp.ranks

Out[86]:

(2, 3, 3, 3, 2)

MPS, MPOs and PMPS

We can represent vectors (e.g. pure quantum states) as MPS, we can
represent arbitrary matrices as MPO and we can represent positive
semidefinite matrices as purifying matrix product states (PMPS). For
mixed quantum states, we can thus choose between the MPO and PMPS
representations.

As mentioned in the introduction, MPS and MPOs are handled as MPAs with
one and two physical legs per site. In addition, PMPS are handled as
MPAs with two physical legs per site, where the first leg is the
“system” site and the second leg is the corresponding “ancilla” site.

From MPS and PMPS representations, we can easily obtain MPO
representations. mpnum provides routines for this:

In [87]:

mps = mp.random_mpa(sites=5, ldim=2, rank=3, normalized=True)
mps_mpo = mp.mps_to_mpo(mps)
mps_mpo.ranks

Out[87]:

(4, 9, 9, 4)

As expected, the rank of mps_mpo is the square of the rank of
mps.

Now we create a PMPS with system site dimension 2 and ancilla site
dimension 3:

In [88]:

pmps = mp.random_mpa(sites=5, ldim=(2, 3), rank=3, normalized=True)
pmps.shape

Out[88]:

((2, 3), (2, 3), (2, 3), (2, 3), (2, 3))

In [89]:

pmps_mpo = mp.pmps_to_mpo(pmps)
pmps_mpo.ranks

Out[89]:

(9, 9, 9, 9)

Again, the rank is squared, as expected. We can verify that the first
physical leg of each site of pmps is indeed the system site by
checking the shape of pmps_mpo:

In [90]:

pmps_mpo.shape

Out[90]:

((2, 2), (2, 2), (2, 2), (2, 2), (2, 2))

Local reduced states

For state tomography applications, we frequently need the local reduced
states of an MPS, MPO or PMPS. We provide the following functions for
this task:

	mp.reductions_mps_as_pmps(): Input: MPS, output: local reductions
as PMPS

	mp.reductions_mps_as_mpo(): Input: MPS, output: local reductions
as MPO

	mp.reductions_pmps(): Input: PMPS, output: Local reductions as
PMPS

	mp.reductions_mpo(): Input: MPO, output: Local reductions as MPO

The arguments of all functions are similar, e.g.:

In [91]:

width = 3
startsites = range(len(pmps) - width + 1)
for startsite, red in zip(startsites, mp.reductions_pmps(pmps, width, startsites)):
 print('Reduction starting on site', startsite)
 print('bdims:', red.ranks)
 red_mpo = mp.pmps_to_mpo(red)
 print('trace:', mp.trace(red_mpo))
 print()

Reduction starting on site 0
bdims: (3, 3)
trace: 1.0

Reduction starting on site 1
bdims: (3, 3)
trace: 1.0

Reduction starting on site 2
bdims: (3, 3)
trace: 1.0

Because pmps was a normalized state, the trace of the reduced states
is close to 1.

You can omit the startsites argument: The default behaviour is the
first reductions starting on site 0, the second on site 1, and so on
(which is just what we have requested). The functions for reduced states
can also compute different constructions by providing different
arguments not described here.

Development & Contributing

This section contains information for anyone who wishes to contribute to
mpnum. Contributions and pull requests for mpnum are very welcome.

Contents

	Development & Contributing

	Code style

	Unit tests

	Test coverage

	Benchmark tests

	Building the documentation

Code style

All contributions should be formated according to the PEP8 standard [https://www.python.org/dev/peps/pep-0008/].
Slightly more than 80 characters can sometimes be tolerated if
increased line width increases readability.

Unit tests

After any change to mpnum, it should be verified that the test suite
runs without any errors. For any new functionality, please provide suitable
unit tests. Also, if you find a bug, consider adding a test that detects the
bug before fixing it.

A short set of tests takes less than 30 seconds and is invoked with one of

python -m pytest
python setup.py test

Note that the second command also installs the dependencies for tests if they
are not present. However, since this command ignores wheel files for the
dependencies, it tries to install h5py from source on many systems. This
is not trivial and might take some time since it builds the HDF5 binaries
from scratch. A better way is to install binaries for the test dependencies
via running the following command from the mpnum source code root directory

pip install -r requirements.txt

An intermediate set of tests, which takes about 2 minutes to run, is
executed automatically for every commit on GitHub via Travis [https://travis-ci.org/dseuss/mpnum] continuous integration.
It can be run locally via

python -m pytest -m "not verylong"
bash tests/travis.sh

A long set of tests takes about 30 minutes and is invoked with

python -m pytest -m 1

Unit tests are implemented using pytest [http://pytest.org/].
Every addition to mpnum should be accompanied by corresponding unit tests.
Make sure to use the right pytest-mark for each test. The intermediate and
long running tests should be marked with the ‘long’ and ‘verylong’ pytest
mark, respectively.

Test coverage

Code not covered by unit tests can be detected with pytest-cov [https://pypi.python.org/pypi/pytest-cov]. A HTML coverage report
can be generated using

python -m pytest --cov-report term --cov-report html --cov=mpnum

Afterwards, the HTML coverage report is available in
htmlcov/index.html.

Benchmark tests

In addition to unit tests, there are benchmark tests which measure the
runtime of certain functions. To run all benchmark tests, run

python -m pytest -m benchmark

Building the documentation

The HTML documentation uses Sphinx [http://www.sphinx-doc.org/].
Building the documentation requires the
RTD theme [https://github.com/rtfd/sphinx_rtd_theme]:

conda install sphinx_rtd_theme # or
pip install sphinx_rtd_theme

On Linux/MacOS, the documentation can be built with a simple

make -C docs html

or

cd docs; make html

After the build, the HTML documentation is available at
docs/_build/html/index.html.

sphinx-autobuild [https://pypi.python.org/pypi/sphinx-autobuild]
can be used to rebuild HTML documentation automatically anytime a
source file is changed:

pip install sphinx-autobuild
make -C docs livehtml

On Windows, docs/make.bat may be useful. For more information,
see the Sphinx tutorial [http://www.sphinx-doc.org/en/stable/tutorial.html].

Gallery

This page contains images needed for the example notebook.
In the future (when sphinx_rtd_theme v.0.2.5 is available on PyPi), this page
will not be visible anymore globally.

[image: _images/notebook_mpo.png]
[image: _images/notebook_mpo_mps.png]

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mpnum	

 	
 	
 mpnum.factory	

 	
 	
 mpnum.linalg	

 	
 	
 mpnum.mparray	

 	
 	
 mpnum.mpsmpo	

 	
 	
 mpnum.mpstruct	

 	
 	
 mpnum.povm	

 	
 	
 mpnum.povm.localpovm	

 	
 	
 mpnum.povm.mppovm	

 	
 	
 mpnum.special	

 	
 	
 mpnum.utils.array_transforms	

 	
 	
 mpnum.utils.extmath	

 	
 	
 mpnum.utils.physics	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | X
 | Y
 | Z

_

 	
 	__init__() (mpnum.mparray.MPArray method)

 	(mpnum.povm.mppovm.MPPovmList method)

 	
 	__len__() (mpnum.mparray.MPArray method)

A

 	
 	adj() (mpnum.mparray.MPArray method)

 	
 	axis_iter() (mpnum.mparray.MPArray method)

B

 	
 	block() (mpnum.povm.mppovm.MPPovm method)

 	(mpnum.povm.mppovm.MPPovmList method)

 	
 	block_diag() (in module mpnum.utils.extmath)

 	block_pmfs_as_array() (mpnum.povm.mppovm.MPPovm method)

 	(mpnum.povm.mppovm.MPPovmList method)

C

 	
 	canonical_form (mpnum.mparray.MPArray attribute)

 	(mpnum.mpstruct.LocalTensors attribute)

 	canonicalize() (mpnum.mparray.MPArray method)

 	chain() (in module mpnum.mparray)

 	compress() (mpnum.mparray.MPArray method)

 	compression() (mpnum.mparray.MPArray method)

 	
 	concat() (in module mpnum.povm.localpovm)

 	conj() (mpnum.mparray.MPArray method)

 	copy() (mpnum.mparray.MPArray method)

 	(mpnum.mpstruct.LocalTensors method)

 	cXY_E0() (in module mpnum.utils.physics)

 	cXY_local_terms() (in module mpnum.utils.physics)

D

 	
 	diag() (in module mpnum.mparray)

 	diagonal_mpa() (in module mpnum.factory)

 	
 	dot() (in module mpnum.mparray)

 	dtype (mpnum.mparray.MPArray attribute)

 	dump() (mpnum.mparray.MPArray method)

E

 	
 	eig() (in module mpnum.linalg)

 	eig_sum() (in module mpnum.linalg)

 	elements (mpnum.povm.mppovm.MPPovm attribute)

 	embed() (mpnum.povm.mppovm.MPPovm method)

 	embed_slice() (in module mpnum.mparray)

 	est_lfun() (mpnum.povm.mppovm.MPPovm method)

 	(mpnum.povm.mppovm.MPPovmList method)

 	est_lfun_from() (mpnum.povm.mppovm.MPPovmList method)

 	
 	est_pmf() (mpnum.povm.mppovm.MPPovm method)

 	(mpnum.povm.mppovm.MPPovmList method)

 	est_pmf_from() (mpnum.povm.mppovm.MPPovm method)

 	(mpnum.povm.mppovm.MPPovmList method)

 	est_pmf_from_mpps() (mpnum.povm.mppovm.MPPovm method)

 	expectations() (mpnum.povm.mppovm.MPPovm method)

 	eye() (in module mpnum.factory)

 	(mpnum.povm.mppovm.MPPovm class method)

F

 	
 	from_array() (mpnum.mparray.MPArray class method)

 	from_array_global() (mpnum.mparray.MPArray class method)

 	from_kron() (mpnum.mparray.MPArray class method)

 	
 	from_local_povm() (mpnum.povm.mppovm.MPPovm class method)

 	from_vectors() (mpnum.povm.localpovm.POVM class method)

 	full_rank() (in module mpnum.mparray)

G

 	
 	get() (mpnum.mparray.MPArray method)

 	
 	global_to_local() (in module mpnum.utils.array_transforms)

 	group_sites() (mpnum.mparray.MPArray method)

H

 	
 	hdims (mpnum.povm.mppovm.MPPovm attribute)

I

 	
 	informationally_complete (mpnum.povm.localpovm.POVM attribute)

 	inject() (in module mpnum.mparray)

 	
 	inner() (in module mpnum.mparray)

 	inner_prod_mps() (in module mpnum.special)

L

 	
 	leg2vleg() (mpnum.mparray.MPArray method)

 	lfun() (mpnum.povm.mppovm.MPPovm method)

 	(mpnum.povm.mppovm.MPPovmList method)

 	lfun_from() (mpnum.povm.mppovm.MPPovmList method)

 	linear_inversion_map (mpnum.povm.localpovm.POVM attribute)

 	
 	load() (mpnum.mparray.MPArray class method)

 	local_sum() (in module mpnum.mparray)

 	local_to_global() (in module mpnum.utils.array_transforms)

 	localouter() (in module mpnum.mparray)

 	LocalTensors (class in mpnum.mpstruct)

 	lt (mpnum.mparray.MPArray attribute)

M

 	
 	match_elems() (mpnum.povm.mppovm.MPPovm method)

 	matdot() (in module mpnum.utils.extmath)

 	mkron() (in module mpnum.utils.extmath)

 	MPArray (class in mpnum.mparray)

 	mpnum (module)

 	mpnum.factory (module)

 	mpnum.linalg (module)

 	mpnum.mparray (module)

 	mpnum.mpsmpo (module)

 	mpnum.mpstruct (module)

 	mpnum.povm (module)

 	
 	mpnum.povm.localpovm (module)

 	mpnum.povm.mppovm (module)

 	mpnum.special (module)

 	mpnum.utils.array_transforms (module)

 	mpnum.utils.extmath (module)

 	mpnum.utils.physics (module)

 	mpo_cH() (in module mpnum.utils.physics)

 	MPPovm (class in mpnum.povm.mppovm)

 	MPPovmList (class in mpnum.povm.mppovm)

 	mps_to_mpo() (in module mpnum.mpsmpo)

 	mps_to_pmps() (in module mpnum.mpsmpo)

N

 	
 	ndims (mpnum.mparray.MPArray attribute)

 	norm() (in module mpnum.mparray)

 	
 	normdist() (in module mpnum.mparray)

 	nsoutdims (mpnum.povm.mppovm.MPPovm attribute)

 	nsoutpos (mpnum.povm.mppovm.MPPovm attribute)

O

 	
 	outdims (mpnum.povm.mppovm.MPPovm attribute)

P

 	
 	pack_samples() (mpnum.povm.mppovm.MPPovm method)

 	(mpnum.povm.mppovm.MPPovmList method)

 	pad_ranks() (mpnum.mparray.MPArray method)

 	partial_trace() (in module mpnum.utils.extmath)

 	partialdot() (in module mpnum.mparray)

 	partialtrace() (in module mpnum.mparray)

 	pauli_mpp() (in module mpnum.povm.mppovm)

 	pauli_mpps() (in module mpnum.povm.mppovm)

 	pauli_parts() (in module mpnum.povm.localpovm)

 	pauli_povm() (in module mpnum.povm.localpovm)

 	pmf() (mpnum.povm.mppovm.MPPovm method)

 	(mpnum.povm.mppovm.MPPovmList method)

 	
 	pmf_as_array() (mpnum.povm.mppovm.MPPovm method)

 	(mpnum.povm.mppovm.MPPovmList method)

 	pmfs_as_array() (mpnum.povm.mppovm.MPPovm method)

 	(mpnum.povm.mppovm.MPPovmList method)

 	pmps_dm_to_array() (in module mpnum.mpsmpo)

 	pmps_reduction() (in module mpnum.mpsmpo)

 	pmps_to_mpo() (in module mpnum.mpsmpo)

 	pmps_to_mps() (in module mpnum.mpsmpo)

 	POVM (class in mpnum.povm.localpovm)

 	probability_map (mpnum.povm.localpovm.POVM attribute)

 	(mpnum.povm.mppovm.MPPovm attribute)

 	prune() (in module mpnum.mparray)

R

 	
 	random_local_ham() (in module mpnum.factory)

 	random_mpa() (in module mpnum.factory)

 	random_mpdo() (in module mpnum.factory)

 	random_mpo() (in module mpnum.factory)

 	random_mps() (in module mpnum.factory)

 	randomized_svd() (in module mpnum.utils.extmath)

 	ranks (mpnum.mparray.MPArray attribute)

 	ravel() (mpnum.mparray.MPArray method)

 	reductions() (in module mpnum.mpsmpo)

 	
 	reductions_mpo() (in module mpnum.mpsmpo)

 	reductions_mps_as_mpo() (in module mpnum.mpsmpo)

 	reductions_mps_as_pmps() (in module mpnum.mpsmpo)

 	reductions_pmps() (in module mpnum.mpsmpo)

 	regular_slices() (in module mpnum.mparray)

 	repeat() (mpnum.povm.mppovm.MPPovm method)

 	(mpnum.povm.mppovm.MPPovmList method)

 	reshape() (mpnum.mparray.MPArray method)

 	reverse() (mpnum.mparray.MPArray method)

S

 	
 	sample() (mpnum.povm.mppovm.MPPovm method)

 	(mpnum.povm.mppovm.MPPovmList method)

 	sandwich() (in module mpnum.mparray)

 	shape (mpnum.mparray.MPArray attribute)

 	(mpnum.mpstruct.LocalTensors attribute)

 	singularvals() (mpnum.mparray.MPArray method)

 	
 	size (mpnum.mparray.MPArray attribute)

 	sparse_cH() (in module mpnum.utils.physics)

 	split() (mpnum.mparray.MPArray method)

 	split_sites() (mpnum.mparray.MPArray method)

 	sum() (mpnum.mparray.MPArray method)

 	sumup() (in module mpnum.mparray)

 	(in module mpnum.special)

T

 	
 	T (mpnum.mparray.MPArray attribute)

 	to_array() (mpnum.mparray.MPArray method)

 	to_array_global() (mpnum.mparray.MPArray method)

 	
 	trace() (in module mpnum.mparray)

 	transpose() (mpnum.mparray.MPArray method)

 	truncated_svd() (in module mpnum.utils.extmath)

U

 	
 	unpack_samples() (mpnum.povm.mppovm.MPPovm method)

 	(mpnum.povm.mppovm.MPPovmList method)

 	
 	update() (mpnum.mpstruct.LocalTensors method)

V

 	
 	vleg2leg() (mpnum.mparray.MPArray method)

X

 	
 	x_povm() (in module mpnum.povm.localpovm)

Y

 	
 	y_povm() (in module mpnum.povm.localpovm)

Z

 	
 	z_povm() (in module mpnum.povm.localpovm)

 	
 	zero() (in module mpnum.factory)

mpnum reference

Moved to API reference.

Matrix product POVMs (mpnum.povm)

Moved to mpnum.povm.localpovm and mpnum.povm.mppovm.

Todo list

Moved to Todo list (autogenerated).

 _images/tensors_matrixelement.png

_images/tensors_matrixproduct.png

_static/comment-bright.png

_images/tensors_mpo_product.png
dummy physical
virtual legs column legs / virtual leg

g

~ local tensor

physical of the product
row legs

_static/comment-close.png

_images/tensors_mpo_updown.png
physical
/" column leg
J2

physical
row leg

_static/ajax-loader.gif

_images/tensors_mpa.png

_images/tensors_mpo.png
Pirizis g jajs

_static/down.png

_images/tensors_mps_no_names.png

_images/tensors_mps_no_names1.png

_static/comment.png

_images/tensors_mpo_with_dummies.png
dummy
virtual leg

virtual leg
C /

physical . physical
row leg column leg

_static/down-pressed.png

_images/tensors_mps.png
global tensor
local tensor virtual leg

‘ (Ai)a }T{ (B))ap }T{ (Ci)pe H (Dy)e

[i [5 physical leg —| & [1

_static/file.png

_static/minus.png

_images/tensors_pmps.png
system site "\ ancillasite

_static/plus.png

_images/tensors_pmps_to_mpo.png
dummy physical column legs,

virtual legs system sites virtual leg

complex conjugate of
PMPS local tensor

complex conjugate of
PMPS local tensor

physical legs
of ancilla sites

physical legs

of ancilla sites

=

PMPS local tensor PMPS local tensor

physical row legs, \ local tensor of an
system sites MPO representation

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Matrix product arrays

 		
 Graphical notation

 		
 Matrix product states (MPS)

 		
 Matrix product operators (MPO)

 		
 Local purification form MPS (PMPS)

 		
 General matrix product arrays

 		
 Next steps

 		
 References

 		
 API reference

 		
 Module overview

 		
 mparray

 		
 mpstruct

 		
 factory

 		
 mpsmpo

 		
 Definitions

 		
 linalg

 		
 povm

 		
 povm.mppovm

 		
 povm.localpovm

 		
 special

 		
 utils

 		
 utils.array_transforms

 		
 utils.extmath

 		
 utils.physics

 		
 Todo list (autogenerated)

 		
 Introductory Notebook to mpnum

 		
 MPA and MPS basics

 		
 MPO basics

 		
 MPO-MPS product and arbitrary MPA-MPA products

 		
 Converting full operators to MPOs

 		
 Creating MPAs from Kronecker products

 		
 Compression

 		
 MPO sum of local terms

 		
 MPS, MPOs and PMPS

 		
 Local reduced states

 		
 Development & Contributing

 		
 Code style

 		
 Unit tests

 		
 Test coverage

 		
 Benchmark tests

 		
 Building the documentation

_images/tensors_mps_no_names_with_dummies.png
dummy virtual legs virtual leg

{ =1 H _JH_H

physical legs

_static/up.png

_static/up-pressed.png

_images/notebook_mpo1.png
[J-THHH]

_images/notebook_mpo_mps.png
{ H]

-

_images/mpnum_logo_120.png
mpnum

_images/notebook_mpo.png
[J-THHH]

_images/notebook_mpo_mps1.png
{ H]

-

